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Reliability
William Revelle and David M. Condon

Introduction

All measures reflect an unknown mixture of interesting signal and uninteresting or irrel-
evant noise. Separating signal from noise is the primary challenge of measurement and is
the fundamental goal of all approaches to reliability theory. What makes this challenge
particularly difficult is that what is signal to some is noise to others. In climate science,
short term variations in weather mask long term trends in climate. In oceanography,
variations in waves mask tidal effects; waves and tides in turn mask long term changes
in sea level. Within psychology, stable individual differences in affective traits contam-
inate state measures of momentary affective states; acquiescence and extreme response
tendencies contaminate trait measures; moment to moment or day to day fluctuations in
alertness or motivation affect measures of ability. All of these examples may be consid-
ered as problems of reliability: separating signal from noise. They also demonstrate that
the classification of signal depends on what is deemed relevant. For indeed, meteorol-
ogists care about the daily weather, climate scientists about long term trends in climate;
similarly, emotion researchers care about one’s current emotion, personality researchers
care about stable consistencies and long term trends.

Whether recording the time spent walking to work or the number of questions
answered on an exam, people differ. They differ not only from each other, but from
measure to measure. Thus, one of us walks to work in 16 minutes one day, but 15.5
minutes the next, and 16.5 on the third day. We can say that his mean time is 16 minutes
with a standard deviation of 0.5 minutes. When asked how long it takes him to get to
work, we should say that our best estimate is 16 minutes but we would expect to observe
anything between 15 and 17 minutes. We tend to emphasize his central tendency (16
minutes) and consider the variation in his walking rate as irrelevant noise. The expected
score across multiple replications that minimizes squared deviations is just the arithmetic
average score. In the “classical test theory” as originally developed by Spearman (1904),
the expected score across an infinite number of replications is known as the true score.
True score defined this way should not be confused with Platonic Truth, for if there is
any systematic bias in the observations, then the mean score will show this bias (Lord &
Novick, 1968).
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By defining true score, 8, as the expected observed score, 6 = £(x), and error as the
deviation of an observed score from this expectation, € = x—&(x), error is independent
of observed score for it will have an expected value of 0 for all values of true score. That
is, for raw scores, X, and deviation scores x = X - X, the scores for an individual may be
expressed as

X;=0;+E; & x;=0;+¢, (231)
and because across individuals the covariance of true and error score, o4 = 0,
0% =04+ 0, + 266 =0y + 0, (232)

Just as we can decompose the observed scores into two components, so can we
decompose the observed score variance into the variance of the expected (true) scores
and the variance of error scores.

Furthermore, because observed scores are the sum of expected scores and error
scores, the covariance of observed score with the expected score is just 63, and the cor-
relation of true scores with observed scores will be

Pox=——=— —=—. (23.3)

This means that the squared correlation of true scores with observed scores (which is
the amount of variance shared between observed and true scores) is the ratio of their
respective variances:

P (23.4)

aqw_ | Qa\’

The reliability of a test is defined as this squared correlation of true score with
observed score, or as the ratio of true to observed variances. Expressing this in engineer-
ing terms of the ratio of signal, S, in a test to noise, N (Brennan & Kane, 1977; Cron-
bach & Gleser, 1964):

S_ _Pa_ (23.5)
N 1-p}

X

Finally, from regression, the true deviation score predicted from the observed score
is just
5 o2
0=Pg.x= ﬁx=pgxx. (23.6)
X

That is, the estimated true deviation score is just the observed deviation score times
the test reliability. The estimated true score will be the mean of the raw scores plus this
estimated true score:

- - 06X -
O=X+fgx=X+ ?(;x=X+pf,xx.
x
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Reliability and validity
Although the validity of a test reflects the content of the items and the particular
criterion of interest, it is important to note that a test cannot correlate with any criterion,

%, more than it can correlate with the latent variable that it measures, . That s, 7., < pg..
This logically is the upper bound of the validity of a test, and thus validity must be less

than or equal to the square root of the reliability: 7.y < pg, = 1/p3,.

Using Reliability

There are three primary reasons to be concerned about a measure’s reliability. The first is
that the relationship between any two constructs will be attenuated by the level of
reliability of each measure: two constructs can indeed be highly related at a latent level,
but if the measures are not very reliable, the observed correlation will be reduced. The
second reason that understanding reliability is so important is the problem of regression
to the mean. Failing to understand how reliability affects the relationship between
observed scores and their expected values plagues economists, sports fanatics, and
military training officers. The final reason to examine reliability is to estimate the true
score given an observed score, and to establish confidence intervals around this estimate
based upon the standard ervor of the observed scores.

Correction for attenuation

The original development of reliability theory was to estimate the correlation of latent
variables in terms of observed correlations “corrected” for their reliability (Spearman,
1904). Measures of “mental character” showed almost the same correlations (.52)
between pairs of brothers as did various physical characteristics (.52), but when the
mental character correlations were corrected for their reliability, they were shown to
be much more related (.81; Spearman, 1904).

The logic of correcting for attenuation is straightforward. For even if observed scores
are contaminated by error, the errors are independent of the true scores, and the
covariance between the observed scores of two different measures, x and y, just reflects
the covariance of their true scores. Consider two observed variables, x and y, which are
imperfect measures of two latent traits, 6 and y:

x=0+¢€ y=w+{,
with variances
0, =05, 0. o2=o, 0t
reliabilities
2 _ % 2 _ %
pﬁx_ O"% py/y_ o?,
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and covariance

Oy =0(0+e)(y +{) = Oy + 0L +-OyetTeL = Oty

Then the correlation between the two latent variables may be expressed in terms of
the observed correlation and the two reliabilities:

Poy = %oy _ T -
[of:1of 2 42 52 2 2 52
v \/;Gx Oy py/y Uy \/;9,; py/_y

That is, the correlation between the true parts of any two tests will the ratio of their
observed correlation to the square root of their respective reliabilities. This correction for
attenuation is perhaps the most important use of reliability theory, for it allows for an
estimate of the true correlation between two constructs when the constructs are per-
fectly measured, without error. It does require, however, that we find the reliability
of the separate tests.

The concept that observed covariances reflect true covariances is the basis for struc-
tural equation modeling, in which relationships between observed scores are expressed
in terms of relationships between latent scores and the reliability of the measurement of
the latent variables. By correcting for unreliability in this way we are able to determine
the underlying latent relationships without the distraction of measurement error.

Regression to the mean

First considered by Galton (1886, 1889) as he was developing the correlation
coefficient, reversion to mediocrity was the observation that the offspring of tall parents
tended to be shorter, just as those of short parents tended to be taller. Although
originally interpreted as of interest only to geneticists, the concept of regression to the
mean is a classic problem of reliability theory that is unfortunately not as well recognized
asit should be (Stigler, 1986, 1997). Whenever groups are selected on the basis of being
extreme on an observed variable, the scores on a retest will be closer to the mean than
they were originally. Classic examples include the tendency of companies with award-
winning CEOs to become less successful than comparable companies whose CEOs do
not win the award (Malmendier & Tate, 2009), for flight instructors to think that
rewarding good pilots is counterproductive because they get worse on their next flight
(Kahneman & Tversky, 1973), for athletes who make the cover of Sports Tllustrated to
do less well following the publication (Gilovich, 1991), for training programs for
disadvantaged children to help their students (Campbell & Kenny, 1999), and for
the breeding success of birds to improve following prior failures (Kelly & Price,
2005). Indeed, the effect of regression to mean artifacts on the market value of baseball
players was the subject of the popular book and movie, Moneyball (Lewis, 2004).
A critical review of various examples of regression artifacts in chronobiology has the
the impressive title “How to show that unicorn milk is a chronobiotic,” and provides
thoughtful simulated examples (Atkinson, Waterhouse, Reilly, & Edwards, 2001).
Regression effects should be controlled for when trying to separate placebo from
treatment effects in behavioral and drug intervention studies (Davis, 2002).

Relinbility 713

So, if it is so well known, what is it? If observed score is imperfectly correlated with
true score (Equation 23.3) then it is also correlated with error because

eyt
0w=0€(0+£)=M+6g=6§)

and thus

o2
pex—\/agai NET A (23.7)

That is, individuals with extreme observed scores might well have extreme true scores,
but are most likely to also have extreme error scores. From Equation 23.6 we see that for
any 2obscrvt:d score, the expected true score is regressed toward the mean with a slope
of piy.

In the case of pilot trainees, if the reliability of flying skill is .5, with a mean score of
50 and a standard deviation of 20, the top 10% of the fliers will have an average score of
75.6 on their first trial but will regress 12.8 points (the reliability value x their deviation
score) toward the mean or have a score of 62.8 on the second trial. The bottom 10%, on
the other hand, will have scores far below the mean, with an average of 24.4, but
improve 12.8 points on their second flight to 37.2. Flight instructors seeing this result
will falsely believe that punishing those who do badly leads to improvement, perhaps
due to heightened effort, while rewarding those who do well leads to a decrease in effort
(Kahneman & Tversky, 1973). Similarly, because the mean batting average in baseball
is & .260 with a standard deviation of ~ .0275 and has a year to year reliability of ~ .38,
those who have a batting average of 36 or .083 above the average in one year (.343
instead of .260) are expected to be just 1.162.031 above the average, or .291, in
the succeeding year (Schall & Smith, 2000). That is, a spectacular year is most likely
followed by a return, not to the overall average, but rather to the player’s average.

Standard error of observed score

Given an observation for one person of x;, what is our best estimate of that person’s true
score, and what is the standard deviation of that estimate? The estimate of true score was

found before (Equation 23.6), and is just §; = p3.%;. Since the variance of the error scores

is the unreliability times the observed score variance, (1-p2,)02, the standard deviation
of our estimated true score will be

Oe=04\/1-p3,. (23.8)

This means that the 95% confidence interval of a true score will be

PE.%£1.960,1/1-p2,. (23.9)
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Note that this confidence interval is symmetric around the regressed score. Thus,
for our flight instructor example with a reliability of .5 and a standard deviation of
20, a pilot with an observed score of 70 will have an estimated true score of
60:1.96x20x+1-.50=32 to 88, and our baseball player who was batting .343
had a 95% confidence interval of .291 +1.96 x .0275 x v/1-.38 =.249 to .333! Given
this amount of expected variation, it is not surprising that so many baseball aficionados
develop superstitious explanations for baseball success; stellar performance one year is
not very predictive of performance in the subsequent year.

True Score Theory

Estimating reliability using parallel tests

Unfortunately, all of the analyses discussed so far are of no use unless we have some way
of estimating 04> and o,>. With one test, it is obviously impossible to find a unique
decomposition into true scores and error scores.

Spearman’s basic insight was to recognize that if there are two (or more) observed
measures (x and x’) that have true scores in common but independent error scores with
equal variances, then the correlation of these two measures is a direct estimate of 64"
(Spearman, 1904). For if both xand x’ are measures of 8, and both have equal amounts
of independent error,

then

oy = 2000 _ % (23.10)

00y  Ox0x

But since both x and x’ are thought to be measures of the same latent variable, and
their error variances are equal, then o, = 6,/ and op, = 04, = 09, and thus the correlation
of two parallel tests is the squared correlation of the observed score with the true score:

2 o}
= e el (23.11)

which is defined as the reliability of the test. Reliability is the correlation between two
parallel tests or measures of the same construct; it is the ratio of the amount of true
variance in a test to the total variance of the test, and is the square of the correlation
between either measure and the true score.

Estimating reliability using = equivalent measures

The previous derivation requires the assumption that the two measures of the latent
(unobserved) trait are exactly equally good and that they have equal error variances.
These are very strong assumptions, for “unlike the correlation coefficient, which is
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Table 23.1 Observed correlations and modeled parameters when estimating the parameters
of parallel, 7 equivalent, and congeneric tests. To solve for two parallel tests (lines 1-2)
requires the assumption of equal true (4,64 = 4,04) and error (€2 = €2) variances. To solve the
six equations for three 7 equivalent tests (lines 1-3) we can relax this assumption, but require
the assumption of equal error variances. Congeneric measures (four or more tests) can be
solved with no further assumptions.

Variable Test; Test, Tests Testy
Test, a'i_] =4 0% + e%

Test, Oy = A169d204 ai = 120'5 + e%

Tests Gixy = 41064309 Oryxy = 42091309 0%, =A30% +€3

Testy O xs =A109A40¢ Oy = 42054409 Oxyx, =A3094409 a'i =/l40'5 +ei

merely an observed fact, the reliability coefficient has embodied in it a belief or point of
view of the investigator” (Kelley, 1942, p. 75). Kelley, of course, was commenting upon
the assumption of parallelism as well as the assumption that the test means the same
thing as when it is given again. With the assumption of parallelism it is possible to solve
the three equations (two for variances and one for the covariance) shown in the first two
rows of Table 23.1 for the three unknowns (64, 62, and 4, ). A relaxation of the exact
parallelism assumption is to assume that the covariances of observed scores with true
scores are equal (4; = A, = 43), but that the error variances are unequal (Table 23.1, lines
1-3). With this assumption of equal covariances with true score (known as tax
equivalence) we have six equations (one for each correlation between the three tests,
and one for each variance) and five unknowns (02, 4; = 4, = A3, and the three error
variances, €2, €2, €2), and we can solve using simple algebra.

Estimating reliability using congeneric measures

If there are at least four tests, it is possible to solve for the unknown parameters (covar-
iances with true score, true score variance, error score variances) without any further
assumptions other than that all of the tests are imperfect measures of the same under-
lying construct (Table 23.1). In terms of factor analysis, the congeneric model merely
assumes that all measures load on one common factor. Indeed, with four or more mea-
sures of the same construct it is possible to evaluate how well each measure reflects the
5

o2’

Xi

construct, 4,, and the amount of error variance in each measure, rf, 0=

Reliability Over What?

The previous paragraphs discuss reliability in terms of the correlations between two or
more measures. What is unstated is when or where these measures are given, as well as
the meaning of alternative measures. Reliability estimates can be found based upon var-
iations in the overall test, variations over time, variation over items in a test, and varia-
bility associated with who is giving the test. Each of these alternatives has a different



716 William Revelle and David M. Condon

Table 23.2 Reliability is the ability to generalize about individual differences across alternative
sources of variation. Generalizations within a domain of items use internal consistency estimates.
If the items are not necessarily internally consistent, reliability can be estimated based upon
the worst split half, g, the average split (corrected for test length), or the best split, 14. Reliability
across forms or across time is just the Pearson correlation. Reliability across raters depends upon
the particular rating design and is one of the family of intraclass correlations. Functions in R
may be used to find all of these coefficients. Except for cor, all functions are in the psych package.

Generalization
over Type of reliability R function Name
Unspecified Parallel tests cor (xx') Fax
Tau equivalent tests cov(xx’) and fa Vix
Congeneric tests cov(xx’) and fa Prx
Forms Alternative form cor (x,y) P
Time Test-retest cor(time, time;) Vs
Split halves Random split half splitHalf Tax
Worst split half iclust or splitHalf B
Best split half splitHalf Ay
Items Internal consistency
General factor (g) omega or omegaSem Wy
Average alpha or scoreltems a
smc alpha or scoreltems 26
All common (hz) omega or omegaSem W,
Raters Single rater Ice ICG,, ICG,, ICC3
Average rater ICC ICCyy, ICC,y, ICC3,

meaning, and sometimes a number of different estimates. In the abstract case of parallel
tests or congeneric measurement, the domain of generalization (time, form, items) is
not specified. It is possible, however, to organize reliability coefficients in terms of'a sim-
ple taxonomy (Table 23.2). Each of these alternatives is discussed in more detail in the
subsequent sections.

Reliability over alternate forms

Perhaps the easiest two to understand, because they are just raw correlations, are the
reliability of alternate formsand the reliability of tests over time (zest—retest). Alternative
Sform reliability is just the correlation between two tests measuring the same construct,
both measures of which are thought to measure the construct equally well. Such tests
might be the same items presented in a different order to avoid cheating on an exam, or
made up different items with similar but not identical content (e.g.,2 +4=? and 4+ 2
=?). Ideally, to be practically useful, such equivalent forms should have equal means and
equal variances. Although the intuitive expectation might be that two such tests would
correlate perfectly, they won’t, for all of the reasons previously discussed. Indeed, the
correlation between two such alternate forms gives us an estimate of the amount of var-
iance that each test shares with the latent construct being measured. If we have three or
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more alternate forms, then their correlations may be treated as if they were 7 equivalent
or congeneric measures, and we can use factor analysis to find each test’s covariance (4)
with the latent factor, the square of which will be the reliability.

The construction of such alternate forms can be done formulaically by randomizing
items from one form to prepare a second or third form, or by creating quasi-matching
pairs of items across forms (“The capital of Brazil is ?” and “Brasilia is the capital of ?”).
To control for subtle differences in difficulty, multiple groups of items can be matched
across forms (e.g.,4x9 =? and 3 x 7 = ? might be easier than 9 x4 =?and 7x3 =2, so
form A could have 4 x9 = ?and 7 x 3 = ? while form B could have 9 x4 =? and 3 x 7 = ?).

With the ability to computer-generate large sets of equivalently difficult ability items
(e.g., Condon & Revelle, 2014; Embretson, 1998; Leon & Revelle, 1985), the con-
struction of alternate forms becomes amazingly straightforward. The typical use of such
alternate forms of measurement is to enable equivalent tests to be given to different
groups over time without worrying about the particular test items being disclosed by
earlier test takers to later test takers.

Stability over time

The second type of reliability (zest—retest) that is a correlation between two forms is the
correlation of the same test given at two different occasions. Unlike the correlations
between alternate forms, which should be high, the expected test-retest correlation
depends upon the construct being measured. A fundamental question in measuring
any construct is its stability over time. Some measures should be stable over time; others
should not. Traits such as ability, extraversion, or the propensity to experience positive
affect are thought to be relatively consistent across time and space. Although there
might be changes in mean scores over time, rank orders of people on these tests should
be relatively stable.
There is, however, at least one serious difficulty with test retest measures:

The retest coefficient on the same form gives, in general, estimates that are too high,
because of material remembered on the second application of the test. This memory factor
cannot be eliminated by increasing the length of time between the two applications,
because of variable growth in the function tested within the population of individuals.
These difficulties are so serious that the method is rarely used. (Kuder & Richardson,
1937, p. 151)

In addition, test-retest measurement of many constructs (e.g., state measures of
positive or negative emotion) are not expected to show any consistency over time.
Indeed, the very concept of a state is that it is not consistent over time. Perhaps the
carliest discussion of dispositions or propensities (traits) and states may be found in
Cicero’s Tusculan Disputationsin 45 BCE (Cicero, 1877; Eysenck, 1983). Among later
but still early work distinguishing between states and traits, perhaps Allport and Odbert
(1936) is the most influential. More recently, Fleeson (2001) conceived of traits as
density distributions of states, and Revelle (1986) as the rate of change of achieving
a state. The state-trait distinction is used in longitudinal studies by the state—trait—
occasion model (Cole, Martin & Steiger, 2005), which explicitly decomposes measures
over time into their state and trait components.
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When examining the correlates of a putative stable trait measured at one time with a
subsequent measure of another trait predicted by the first, the natural question is to
what extent is the trait measure at time 1 the same as if it were measured at the later
time. Consider the case of intelligence at age 11 predicting subsequent risk for mor-
tality (Deary, Whiteman, Starr, Whalley, & Fox, 2004). How stable is the measure
taken at age 112 Correlations of .66 and .54 with performance on the identical exam
68 years and 79 years later (Deary, Pattie, & Starr, 2013; Gow et al., 2011) suggest
that the test is remarkably stable. These correlations are even higher when corrected
for restriction of range of those taking the retest (there was differential attrition asso-
ciated with 1Q).

The stability of intelligence measures across 68-79 years is in marked contrast to the
much lower (but non-zero) correlations of affect over a few years. That positive state
affect among high school students is related .34 to positive state affect three years later
suggests that the measure reflects not just a state component, but rather a reliable trait
component as well (Kendall, 2013).

Split half reliability: the reliability of composites

For his dissertation research at the University of London, William Brown (1910)
examined the correlations of a number of simple cognitive tasks (e.g., crossing out
e’s and r’s from jumbled French text, adding up single digits in groups of ten) given
two weeks apart. For each task, he measured the test-retest reliability by correlating
the two time periods and then formed a composite based upon the average of the
two scores. He then wanted to know the reliability of these composites so that he could
correct the correlations with other composites for their reliability. That is, given a
two-test composite, X, with a reliability for each test, p, what would the composite
correlate with a similar (but unmeasured) composite, X'?

Consider X and X', both made up of two subtests. The reliability of X is just its
correlation with X’ and can be thought of in terms of the variance~covariance matrix,

EXXIZ

Ixxe=| ... ... .. |; (23.12)
Cow : Vu

letting V,._1y,1» and Cxx =1Cxx/1’, where 1 is a a column vector of 1s and 1’ is its
transpose, the correlation between the two tests will be

Pt = Ve

But the variance of a test is simply the sum of the true covariances and the error var-
iances, and we can break up each test into two subtests (X and X, ) and their respective
variances and covariances. The structure of the two tests seen in Equation 23.12
becomes
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Vxl Cxlxz Cx1x1 Cxlxz
Txx' = Cxlx2 sz szx'l szxi . (23.13)

Cuix; @ Gy Vi, ¢ Cxix)

xxy ¢ Cxxy [ Cxixy 00 Vi

Because the splits are done at random and the second test is parallel with the
first test, the expected covariances between splits are all equal to the true score var-
iance of one split (V}), and the variance of a split is the sum of true score and error
variances:

th + Vel th th th
EXX' = th . th + Vcl th th
th th Vt'l + Vcl Vt,l

Ve, Vi, Vi, Vi + Ve

The correlation between a test made up of two halves with intercorrelation
(n = V3, / Vs,) with another such test is

’ 4V, 4V, 4n
xx = = = )
V@V, 12V, 4V, +2V,) 2Va+2Vy 2n+2
f

and thus

2n

Yy = .
1+7‘1

(23.14)

Equation 23.14 is known as the spliz half estimate of reliability. It is important to note
that the split half reliability is not the correlation between the two halves, but rather is
adjusted upward by Equation 23.14.

In the more general case where the two splits do not have equal variance (V,, # V,, ),
Equation 23.14 becomes a little more complicated and may be expressed in terms of the
total test variance as well as the covariance between the two subtests, or in terms of the
subtest variances and correlations (J. Flanagan as cited in Rulon, 1939):

4C,, s, _ 4Cy __ AanSun _ 47130 55, 5
Vi 2Cun+Va+Viy 2Can+ Vi + Vi 27gu5q00+ 52 + 52
(23.15)

V! =
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Because the total variance V,, 4y, = Vi, + Vi, +2C,, 4,, and the variance of the differ-

Vi + Vo Vi oy
2

ences is Vi _x = Vi + Vi, —2Cy s, then Cyyy = , and we can express

reliability as a function of the variances of differences scores between the splits and
the variances of the two splits:

rxxl=4cxm =2(Vxx+sz‘Vx1—xz) = 2(Vay + Vg = Vi -3) _ Vx1+sz‘Vxn—xz_
Ve Va+Va+2Can  VatVatVatVa-Vam y .,y _ Vea-x
¥ 2
(23.16)

When calculating correlations was tedious compared to finding variances,
Equation 23.16 was a particularly useful formula because it just required finding var-
iances of the two halves as well as the variance of their differences. It is still useful,
for it expresses reliability in terms of test variances and recognizes that unreliability is
associated with the variances of the difference scores (perfect reliability implies
that V,, _,, =0).

But how to decide how to split a test? Brown compared the scores at time one with
those at time two and then formed a composite of the tests taken at both times. But
estimating reliability based upon stability over time implies no change in the underlying
construct over time. This is reasonable if measuring speed of processing, but is a very
problematic assumption if measuring something more complicated:

...the reliability coefficient has embodied in it a belief or point of view of the investigator.
Consider the score resulting from the item, “Prove the Pythagorean theorem.” One teacher
asserts that this is a unique demand and that there is no other theorem in geometry that can
be paired with it as a similar measure. It cannot be paired with itself if there is any memory,
conscious or subconscious, of the first attempt at proof at the time the second attempt is
made, for then the mental processes are clearly different in the two cases. The writer sug-
gests that anyone doubting this general principle take, say, a contemporary-affairs test and
then retake it a day later. He will undoubtedly note that he works much faster and the depth
and breadth of his thinking is much less—he simply is not doing the same sort of thing as
before. (Kelley, 1942, pp. 75-76)

The alternative to estimating composite reliability by repeating the measure to get
two splits is to split the test items from one administration. Thus, it is possible to
consider splits such as the odd versus even items of a test. This would reflect differ-
ences in speed of taking a test in a different manner than would splitting a test into a
first and second part (Brown, 1910). Unfortunately, the number of ways to split an

n-item test into two is an explosion of possible combinations (n/Z) 2/
A 16-item test has 6,435 possible 8-item splits, and a 20-item test has 92,378 10-item
splits. Most of these possible splits will yield slightly different split half estimates.
Consider all possible splits of the 16 cognitive ability items in the ability data set included
in the psych package (Revelle, 2017) in R (R Core Team, 2017). The split half reliabil-
ities found from Equation 23.15 range from .73 to .87, with an average of .83
(Figure 23.1).
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Split half reliabilities of a test with 16 ability items
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Split half reliability

Figure 23.1 There are 6,435 possible 8-item splits of the 16 ability items of the ability data
set. Of these, the maximum split half reliability is .87, the minimum is .73, and the average is .83.
All possible splits were found using the splitHalf function.

Internal consistency estimates of reliability

The generalization of Equation 23.14 to predict the reliability of a composite made up
of # tests with average intercorrelation of 7;; was developed by both (Brown, 1910) and

(Spearman, 1910), and has become known as the Spearman—Brown prophecy formula:
_ nr
rm_——1+(n—1)?,-j' (23.17)

Expressed in terms of the average covariance, &, the unstandardized reliability is

ney

Pix = T+ (-1 (23.18)

That is, the reliability of a composite of # tests (or items) increases as a function of the
number of items and the average intercorrelation or covariance of the tests (items). By
combining items, each of which is a mixture of signal and noise, the ratio of signal to
noise (S/N) increases linearly with the number of items and the resulting composite
is a purer measure of signal (Cronbach & Gleser, 1964). If we think of every item as
a very weak thread (the amount of signal is small compared to the noise), we can make
a very strong rope by binding many threads together (Equation 23.17).

Considering how people differ from item to item and from trial to trial, Guttman
(1945) defined reliability as variation over trials:

Using this definition, no assumptions of zero means for errors or zero correlations are
needed to prove that the total variance of the test is the sum of the error variance and
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the variance of expected scores; this relationship between variances is an algebraic identity.
Therefore, the reliability coefficient is defined without assumptions of independence as the
complement of the ratio of error variance to total variance. (Guttman, 1945, p. 257)

That is,

(23.19)

KR-20, A3, and « as indicators of internal consistency

Although originally developed to predict the reliability of a composite where the
reliability of the subtests is found from their test-retest correlation, the Spearman—
Brown methodology was quickly applied to estimating reliability based upon the
internal structure of a particular test. Because of the difficulty of finding the average
between-item correlation or covariance in Equations 23.17 or 23.18, reliability was
expressed in terms of the total test variance, V,, and a function of the item variances,
V x;. For dichotomous items with a probability of being correct, p, or being wrong,
g4, Vs, = pigi; (Kuder & Richardson, 1937). This approach was subsequently generalized
to polytomous and continuous items by Guttman (1945) and by Cronbach (1951).

The approach to find o2 for dichotomous items taken by Kuder and Richardson
(1937) was to recognize that for an #-item test, the average covariance between items
estimates the reliable variance of each item, and the error variance for each item will
therefore be

Gi‘z"z oi-Zpiq;

X

~ n(n—l)' R 7’;(71—1)7

and thus

or

_ X)) n_ (23.20)

Vax = .
2
oy n-1

In their derivation in terms of the total item variance and the sum of the (dichoto-
mous) item variances, Equation 23.20 was the 20th equation in Kuder and Richardson
(1937) and is thus is known as the Kuder-Richardson (20), KR-20, or KR, formula for
reliability. Generalizing this to the polytomous or continuous item case, it is known
either as a (Cronbach, 1951) or as A3 (Guttman, 1945):
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Guttman (1945) considered six different ways to estimate reliability from the pattern
of item correlations. His A3 coefficient used the average inter-item covariance as an
estimate of the reliable variance for each item. He also suggested an alternative, Ag,
which is to use the amount of an item’s variance which is predictable by all of the other
variables. That is, to find the squared multiple correlation or smc of the item with all the
other items and then find the shared variance as V, = sm¢;V,,,

Vi-ZVy+ZV,,

A
¢ Ve

(23.22)

Guttman (1945) also considered the maximum split half reliability (44). Both 44 and
A are obviously more complicated to find than 4; or @. To find 44 requires finding the
maximum among many possible splits, and 4¢ requires taking the inverse of the cor-
relation matrix to find the sme. But with modern computational power, it is easy to find
A¢ using the alpha,scoreItems,or splitHalf functionsin the psychpackage. Itis
a little more tedious to find A4, but this can be done by comparing all possible splits for
up to 16 items or by sampling thousands of times for larger data sets using the
splitHalf function.

Consider the 16 ability items with the range of split half correlations as shown in
Figure 23.1. Using the splitHalf function we find that the range of possible splits
is from .73 to .87 with an average of .83, a = .83, 4¢ = .84, and a maximum (44) of .87.

Standard error of alpha

There are at least two ways to find the standard error of the estimated a. One is through
bootstrapping, the other is through normal theory. Consider the variability in values of a
for the 16 ability items for 1,525 subjects found in the ability data set. Using the
alpha function to bootstrap by randomly resampling the data (with replacement)
10,000 times yields a distribution of alpha that ranges from .802 to .848 with a mean
value of .829 (Figure 23.2). Compare this to the observed value of .829.

Using the assumption of multivariate normality, Duhachek and Iacobucci (2004)
showed that the standard error of a, ASE, is a function of the covariance matrix of
the items, V, the number of items, #, and the sample size, N. Defining Q as

—2—”2__ ' 2 ~ rer2
Q- vy VBV V) -2aV (VAL (23.23)

where tr is the trace of a matrix (the sum of the diagonal of a matrix), and 1 is a row
vector of 1 s, then the standard error of a is

ASE = \/g (23.24)
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Figure 23.2 The value of a for the ability data set varies across 10,000 bootstrapped
resamplings from .80 to .85. For the 1,525 subjects in the 16-item ability data set, the
95% confidence interval using normal theory is from 0.8167 to 0.8418, which is very similar

to the empirical bootstrapped estimates of 0.8168 to 0.8405.

and the resulting 95% confidence interval is

ax 1.96\/%. (23.25)

These confidence intervals are reported in the alpha function. For the 1,525 sub-
jects in the 16-item ability data set, the 95% confidence interval using normal theory
is from 0.8167 to 0.8418, which is very similar to the empirical bootstrapped estimates

of 0.8166 to 0.8403.

Reliability and item analysis

The a reliability of a scale is a function of the number of items in the scale as well as the
average inter-item correlation in the scale (Equations 23.17-23.21). Thus, even if the
items do not correlate very highly, the reliability of the total scale can be increased by
merely adding items. Consider scales ranging in length from 1 to 100 items with average
inter-item correlations of .01, .05, .1, .2, .3, and .4 (left-hand panel of Figure 23.3). An
a of .9 may be achieved by using 14 highly correlated items (7 = .4 ), while to achieve this
same level of reliability it would take 21 items with a somewhat lower inter-correlation

725

Reliability

Alpha

024 ;

0.0 ~
T T T

T T T

0 20 40 60 80 100
Number of items

Signal/Noise

60

50 +

40 -

/N

9 30 4
20 4

10

T
0 20 40 60 80 100
Number of items

Figure23.3 aor A3 reliability is an increasing function of the number of items and the inter-item
correlation. Just six highly correlated items (»= .4) are needed to achieve an a = .8. which requires
16 items with more typical correlations (7= .2). Even with barely related items (e.g., #=.05),an a
of .8 may be achieved with 76 items. a values of .90 require 14,21, 36, and 81 for intercorrelations
of 4, .3, .2, and .1 respectively. Although a is a decelerating function of the number of items, the
relationship between signal /noise ratio and both the inter-item correlations and the number of

items is linear.

(7=.3) or 36 with an even lower value (#=.2). For reference purposes, the average cor-
relation of the 16 ability items in the ability data set have an #=.23 while the five
item scales measuring “Big 5 ” constructs in the bfi data set have average rs ranging

from .23 (for openness/intellect) to .46 (for emotional stability).
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The ratio of reliable variance to unreliable variance is known as the signal /noise ratio
S 2 . . .
and is just N ip_z’ which, for the same assumptions as for a, will be
-p

S _nr (23.26)

That is, the S/N ratio increases linearly with the number of items as well as with the
average intercorrelation. By thinking in terms of this ratio, the benefits of increased reli-
ability due to increasing the number of items is seen not to be negatively accelerated as it
appears when thinking just in reliability units (Equation 23.21). Indeed, while the S/N
ratio is linear with the number of items, it is an accelerating function of the conventional
measures of reliability. That is, while the S/N = 1 for a test with a reliability of .5, it is 2
for a test with a reliability of .66, 3 for .75, and 4 for .8; it is 9 for a test with a reliability of
.9 and 19 for a reliability of .95 (right-hand panel of Figure 23.3). Depending upon
whether the test is norm referenced (comparing two individuals) or domain referenced
(comparing an individual to a criterion), there are several different S/N ratios to con-
sider, but all follow this same general form (Brennan & Kane, 1977).

It is not unusual when creating a set of items thought to measure one construct to
have some items that do not really belong. This is, of course, an opportunity to use factor
analysisto explore the structure of the data. Ifjust a few items are suspect, it is possible to
find @ and A¢ for all the subsets found by dropping out one item. That is, if an item
doesn’t really fit, the a and A¢ values of a scale without that item will actually be higher
(Table 23.3). In the example, five items measuring Agreeableness and one measuring
Conscientiousness were scored using the alpha function. Although the @ and A6 values
for all six items were .66 and .65 respectively, if item C1 is dropped, the values become
.70 and .68. For all other single items, dropping the item leads to a decrease in a and 4¢
either because it reduces the average # (items A2—-A5) or because the test length is less
(items A1-A5). Note that the alpha function recognizes that one item (Al) needs to
be reverse scored. If it were not reverse scored, the overall a value would be .44. This
reverse scoring is done by finding the sign of the loading of each item on the first prin-
cipal component of the item set and then reverse scoring those with a negative loading.

Ifinternal consistency were the only goal when creating a test, clearly reproducing the
same item many times will lead to an extraordinary reliability. (It will not be one because
given the same item repeatedly, some people will in fact change their answers.) But this
kind of tautological consistency is meaningless and should be avoided. Items should have
similar domain content, but not identical content.

Reliability of scales formed from dichotomous or polytomous variables

Whether using true /false items to assess ability or four- to six-level polytomous (Likert-
like) items to assess interests, attitudes, or temperament, the inter-item correlations are
reduced from what would be observed with continuous measures. The tesrachoric and
polychoric correlation coeflicients are estimates of what the relationship would be
between two bivariate, normally distributed items if they had not been dichotomized
(tetrachoric) or trichotomized, tetrachotomized, pentachotomized. or otherwise
broken into discrete but ordered categories (Pearson, 1901). The use of tetrachoric
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Table 23.3 Item analysis of five Agreeableness items and one Conscientiousness item from the
bfi data set using the alpha function. Note that one item is automatically reversed. Without
reverse scoring item Al, @ = .44 and Ag = .52. The items are: Al: “Am indifferent to the feelings of
others.” A2: “Inquire about others’ well-being.” A3: “Know how to comfort others.” Ad: “Love
children.” A5: “Make people feel at ease.” C1: “Am exacting in my work.” The item statistics
include the number of subjects who answered the item, the raw correlation (inflated by item
overlap), a correlation that corrects for scale unreliability and item overlap, the correlation with the
scale without that item, the mean and standard deviation for each item. Examining the effect of
dropping one item at a time or of looking at the correlations of the item with the scale, item C1
does not belong to this set of items.

> alpha(bfi[1:6])
Reliability analysis
Call: alpha(x = bfi[1:6])

raw_alpha std.alpha G6 (smc) average r ase mean sd
0.66 0.66 0.65 0.25 0.014 4.6 0.8

lower alpha upper 95% confidence boundaries
0.63 0.66 0.68

Reliability if an item is dropped:
raw_alpha std.alpha G6 (smc) average r alpha se

Al- 0.66 0.66 0.64 0.28 0.015
A2 0.56 0.56 0.55 0.20 0.018
A3 0.55 0.55 0.53 0.20 0.018
A4 0.61 0.62 0.61 0.24 0.016
A5 0.58 0.58 0.56 0.22 0.017
Ci 0.70 0.71 0.68 0.33 0.014

Item statistics

n r r.cor r.drop mean sd
Al- 2784 0.52 0.35 0.27 4.6 1.4
A2 2773 0.72 0.67 0.55 4.8 1.2
A3 2774 0.74 0.71 0.57 4.6 1.3
A4 2781 0.61 0.48 0.39 4.7 1.5
A5 2784 0.69 0.61 0.49 4.6 1.3
Ci1 2779 0.37 0.13 0.11 4.5 1.2

Non missing response frequency for each item

1 2 3 4 5 6 miss
Al 0.33 0.29 0.14 0.12 0.08 0.03 0.01
A2 0.02 0.05 0.05 0.20 0.37 0.31 0.01
A3 0.03 0.06 0.07 0.20 0.36 0.27 0.01
A4 0.05 0.08 0.07 0.16 0.24 0.41 0.01
A5 0.02 0.07 0.09 0.22 0.35 0.25 0.01
Cl 0.03 0.06 0.10 0.24 0.37 0.21 0.01
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correlations to model what would be the case if the data were in fact bivariate normal
had they not been dichotomized is not without critics. The most notable was Yule
(1912), who suggested that some phenomena (vaccinated / not vaccinated, alive vs.
dead) were truly dichotomous, while Pearson and Heron (1913) defended the use of
his tetrachoric correlation.

Some have proposed that one should use tetrachoric or polychoric correlations when
finding the reliability of categorical scales (Gadermann, Guhn, & Zumbo, 2012;
Zumbo, Gadermann, & Zeisser, 2007). We disagree. The Zumbo et al. (2007)
procedure estimates the correlation between unobserved continuous scores and true
scores rather than the correlaton of the observed scores (formed by dichotomizing
the unobserved continuous scores) with the latent true score. Reliability is the squared
correlation between observed score and true score, not an unobserved score with true
score. With a simple simulation it is easy to see that the use of ¢ or Pearson’s » provides
reliability estimates that closely match the squared correlation of observed and latent,
but that using the tetrachoric or polychoric correlation inflates the reliability estimate.

Partially following the simulation of Zumbo et al. (2007), we simulated 14 items for
10,000 participants using the sim. congeneric function. For each participant, a nor-
mally distributed latent score was used to generate a probability of response. This latent
score was then used to generate 14 different scores broken into 1 of » categories, where
n ranged from 2 to 7. All items were set to have the same difficulty. The item factor
loadings were varied to produce three different sets of data with different levels of
reliability (Table 23.4). Several conclusions can be drawn from this simulation: (1) With
the same underlying distribution, inter-item »and thus a or 43 increase as the number of
response categories increases. (2) The correlation of observed scores with the latent
scores also increases as more categories are used. (3) If we are concerned with how well
our test scores correlate with the latent scores from which they were generated, the
squared correlation of observed scores based upon cither simply summing the items
or by doing an item response theory based scoring (not shown) is almost exactly the
same as the @ found using the raw correlations. This is indeed what we would expect
given Equations 23.17-23.21. This is not the case when we use the tetrachoric or
polychoric correlations. The suggestion that we should use “ordinal @” seems incorrect.

Domain sampling theory and structural measures of reliability

A great deal of space has been devoted to finding A3 or a. This is not because we rec-
ommend the routine use of either, for we don’t. They are important to discuss both for
historical reasons and because so many applied researchers use them. It would seem that
one cannot publish a paper without reporting “Cronbach’s a.” This is unfortunate, for
as we (Revelle, 1979; Revelle & Zinbarg, 2009) and many others (e.g., Bentler, 2009;
Green & Yang, 2009; Lucke, 2005; Schmitt, 1996; Sijtsma, 2009), including Cronbach
and Shavelson (2004 ), have discussed, a is neither a measure of how well a test measures
one thing (Revelle, 1979; Revelle & Zinbarg, 2009; Zinbarg, Revelle, Yovel, & Li,
2005), nor the greatest lower bound for reliability (Bentler, 2009).

The basic problem is that a assesses neither the reliability of a test nor the internal
consistency of a test, #nless the test items all represent just one factor. This is generally
not the case. When we think about a test made up of specific items thought to measure a
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Table 23.4 The average inter-item correlation, and thus a varies as a function of the number of
categories in a scale as well as the discrimination parameter (factor loadings) of the items. a based
upon the raw correlations more closely approximates the squared correlation of the observed
scores with the latent score, pZ, than does the @ based upon the polychoric correlations. The ratio
of alpha to the squared correlation is shown for both the raw, a/p?, and the polychoric based a,
apoly/pz. Simulated data using the sim.congeneric function.

Simulated results for 10,000 cases

Factor Number

loading  of categories 7 a Pot  P%  Tooly Opoy Ppo Pﬁe o/p? ap,,,y/pz
2 006 048 069 047 010 0.60 0.65 043 1.02 141
3 007 053 073 053 010 061 071 051 1.00 1.20
4 008 056 075 056 010 0.60 074 054 099 1.12

.33 5 009 058 076 059 010 061 0.75 057 099 1.08
6 009 058 076 0.58 0.10 0.60 0.76 0.58 1.00 1.03
7 0.09 059 077 0.59 010 061 0.76 057 1.00 1.06
2 014 0.69 083 069 022 080 083 069 1.00 1.16
3 016 073 085 0.73 022 0.80 0.85 0.73 1.00 1.10
4 0.18 076 087 0.77 022 0.80 0.87 076 099 1.04

47 5 019 077 088 0.77 022 0.80 0.88 077 099 1.03
6 020 078 0.88 078 022 080 0.88 0.78 1.00 1.02
7 021 079 089 079 022 0.80 0.89 0.79 1.00 1.01
2 026 083 09 080 039 090 095 081 1.03 1.12
3 029 085 092 085 039 090 091 084 1.00 1.08
4 0.33 0.87 093 087 039 090 093 087 1.00 1.04

.63 5 035 088 094 0.88 039 090 094 088 1.00 1.02
6 036 089 094 0.89 0.39 090 094 089 1.00 1.01
7 037 0.89 094 0.89 039 090 094 089 1.00 1.01

construct, we are concerned not so much with those particular items as we are with how
those items represent the larger (perhaps infinite) set of possible items that reflect that
construct. Thus, extraversion is not just responding with strong agreement to an item
asking about enjoying lively parties, but it also reflects a preference for talking to people
rather than reading books, to seeking out exciting situations, to taking charge, and
many, many more affective, behavioral, cognitive, and goal-directed items (Wilt &
Revelle, 2009). Nor is general intelligence just the ability to do spatial rotation
problems, to do number or word series, or the ability to do a matrix reasoning task
(Gottfredson, 1997). Items will correlate with each other not just because they share
a common core or general factor, but also because they represent some subgroups of
items which share some common affective, behavioral, or cognitive content, i.e., group
Sfactors. Tests made up of such items will correlate with other tests to the extent they
both represent the general core that all items share, but also to the extent that specific
group factors match across tests.

By a general factor, we mean a factor on which most if not all of the items have a
substantial loading. It is analogous to the general 2.7 K background radiation in radio
astronomy used as evidence for the “Big Bang.” That is, it pervades all items
(Revelle & Wilt, 2013). Group factors, on the other hand, represent item clusters where
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only some or a few items share some common variance in addition to that shared with
the general factor. These group factors represent systematic content (e.g., party-going
behavior vs. talkativeness in measures of extraversion, spatial and verbal content in
measures of ability) over and above what is represented by the general factor. Typically,
when we assign a name to a scale we are implicitly assuming that a substantial portion of
that scale does in fact reflect one thing: the general factor.

Reliability is both the ratio of true score variance to observed variance and the
correlation of a test with a test just like it (Equation 23.11). But what does it mean
to be a test just like another test? If we are concerned with a test made up of a set of
items sampled from a domain, then the other test should also represent samples from
that same domain. If we are interested in what is common to all the items in the domain,
we are interested in the general factor saturation of the test. If we are interested in a test
that shares general as well as group factors with another test, then we are concerned with
the total reliability of the test.

Seven measures of internal consistency: a, 3, 4s, f, Wg, @, and A4

This distinction between general, group, and total variance in a test, and the resulting
correlations with similar tests, has led to at least seven different coefficients of internal
consistency. These are: @ (Cronbach, 1951), Equation 23.21, and its equivalent, 13
(Guttman, 1945), Equation 23.21, which are estimates based upon the average
inter-item covariance; Ag, an estimate based upon the squared multiple correlations
of the items (Equation 23.22); 3, defined as the worst split half reliability (Revelle,
1979); wg (McDonald, 1999; Revelle & Zinbarg, 2009; Zinbarg et al., 2005), the
amount of general factor saturation; e, the total reliable variance estimated by a factor
model; and A4, the greatest split half reliability.

As an example of the use of these coeflicients, consider the 16 ability items discussed
earlier (Figure 23.1). We have already shown that this set has @ = A3 = .83 with a 45 = .84
and a A4 = .87. To find the other coefficients requires either cluster analysis for § or factor
analysis for the two w coeflicients. A parallel analysis of random data (Horn, 1965) sug-
gests that two principal components or four factors should be extracted. When four fac-
tors are found, the resulting structure may be seen in the left-hand panel of Figure 23 4.
But these factors are moderately correlated, and when the matrix of factor correlations is
in turn factored, the hierarchical structure may be seen in the right-hand panel of
Figure 23.4.

Although hierarchical, higher-level, or bifactor models of ability have been known for
years (Holzinger & Swineford, 1937, 1939; Schmid & Leiman, 1957}, it is only rela-
tively recently that these models have been considered when addressing the reliability of
a test (McDonald, 1999; Revelle & Zinbarg, 2009; Zinbarg et al., 2005). Rather than
consider the reliable variance of a test as reflecting just one factor, F, with correlations

modeled as R = FF' + U? and reliability as

1FF'1’

1FF'1 +tr(U?)’ (2327)

Prx=

the hierarchical approach decomposes test variance into that due to a general factor, g,
and a number of independent group factors, G;, with a correlation matrix of
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Figure 23.4 An exploratory factor analysis of 16 ability items shows four moderately correlated
factors (left panel). When these in turn are factored, a second-order general factor is shown to
account for much of the variance of the items (right panel and Table 23.5).

R =(g+G)(g+G)'+ U2 This representation leads to two different measures of reliabil-
ity wg and w,, where

_ 1gg11’ (lgl’)z
5" 1gg 1+ 1GGT + r(U%) 1RV (23.28)
and
lggl’ + 1GG'Y’ 1gg1' + 1GG'Y
0= — GG _lggl +1GGT (23.29)
lgg'l' + 1GG'T" + tr (U?) 1R1

wg represents that percentage of the variance of a test which is due to the general factor
that is common to all of the items in the test, while w, is the total amount of reliable
variance in the test. When o, is estimated using a Schmid and Leiman (1957) transfor-
mation or by using a higher-order model, it is also known (Revelle & Zinbarg, 2009;
Zinbarg et al., 2005) as @y, for Whicrarchicar, to reflect that it represents a hierarchical
model. To make the terminology even more confusing, (McDonald, 1999,
Equations 6.20a and 6.20b), who introduced w, used Equations 23.28 and 23.29 to
define w without distinguishing between these as two very different models.

The approach of Schmid and Leiman (1957) is to extract a number of factors, F,
rotate them obliquely, and then extract one, general, factor, gy, from the resulting factor
intercorrelation matrix. The loadings of the original variables on this higher-order
factor are found by the product g=g| F. That is, the g loadings are fully mediated by
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the lower-order factors (Gignac, 2007). The original loadings in F are then residualized
by F* =F-g, F. This results in the model

R-= (g+F‘)(g’ +F*’) +U2,

* represents the residualized group factors and g the matrix of factor cocfﬁaans
:;pr t(;:: friéir?al variables. Then w, andg:or are found by Equations 23.28 and 23.2?. T;us
approach is implemented in the omega function in the psych package. The solution for
the 16 ability items is shown in Table 23.5, where O = 0.65 and' w, = 0.86. 1939
Alternatively, an @y, from a bifactor solution (Holzinger & Swineford, 1937, ‘)
may be found directly by using a confirmatory factor model where g loads on all vari-
ables and the G matrix has a cluster structure such that items load on one, and. only one,
of multiple groups. This approach is implemented in the omegasem function in t(lilc
psych package and makes use of the sem package (Fox, Nie, & Byrnes, 2013) to do
matory fit. .
tthcr;)fI(;ﬁrtrunatcg, these two approaches do not always agree. wg, as found with t'hc
Schmid and Leiman (1957) transformation using omega is _.65, while g, fpund with
the omegaSem function is .75. The reason for the difference is that that the bifactor sem
solution tends to find the general factor as almost equivalent to the first group factgr
found with the hierarchical solution. The two approaches differ moit obviously in
the case of a very small to no general factor (see “Wbcr} @ goes wrong below). .
Another approach to finding the general factor rcl‘labmty is through the use of thI.'-
archical cluster analysis with the ICLUST algorithm (Revelle, 1979), which is

Table 23.5 An analysis of the hierarchical structure of 16 ability items shows a general factor and
four lower-level factors. wy, = 0.65, a(43) = 0.83, i = 0.84, w, = 0.86.

An omega analysis table from the psych package in R

Variable J Flx F2x F3x F4x h2 u2 P2

reason.4 0.50 0.27 0.34 0.66 0.73
reason.16 0.42 0.21 0.23 0.77 0.76
reason.17 0.55 0.47 0.52 0.48 0.57
reason.19 0.44 0.21 0.25 0.75 0.77
letter.7 0.52 0.35 0.39 0.61 0.69
letter.33 0.46 0.30 0.31 0.69 0.70
letter.34 0.54 0.38 0.43 0.57 0.67
letter.58 0.47 0.20 0.28 0.72 0.78
matrix.45 0.40 0.66 0.59 0.41 0.27
matrix.46 0.40 0.26 0.24 0.76 0.65
matrix.47 042 0.15 0.23 0.77 0.79
matrix.55 0.28 0.14 0.88 0.65
rotate.3 0.36 0.61 0.50 0.50 0.26
rotate.4 041 0.61 0.54 0.46 0.31
rotate.6 0.40 0.49 041 0.59 0.39
rotate.8 0.32 0.53 0.40 0.60 0.26

SS loadings 3.04 1.32 0.46 0.42 0.55

implemented in the psych package as iclust. This approach is very simple: (1) Find the
overall correlation matrix; (2) combine the two most similar items into a new ( compos-
ite) item; (3) find the correlation of this new item with the remaining items; (4) repeat
steps 2 and 3 until the worst split half correlation, g, fails to increase. B for a cluster is
found by the correlation between the two lower-level parts of the cluster (corrected by
Equation 23.15). Because the only variance that the two worst splits share will be
general variance, f# is an estimate of the general factor saturation. # found by iclust
will usually, but not always, agree with the estimated @gp;i found by the omega function.

When a goes wrong: the misuse of ¢

a is frequently reported without any evidence for scale homogeneity. The assumption is
made that if a test has a medium to high value of @ it must automatically measure one
thing. This is, unfortunately, not correct, for @ is just a measure of the average inter-item
correlation and the number of items. It does not measure homogeneity. We have shown
how a 12-item scale with average correlations of .3 (and thus a = .84) can represent one
general factor in which all the items correlate at .3, two correlated but distinct groups
with within-group correlations .42 or .54 but between-group correlations of .2 or .1
respectively, or even two unrelated sets with within-group correlations of .66 and
between-group correlations of 0 (Revelle & Wilt, 2013).

Consider 10 items from the Big Five Inventory (BFI), five of which measure emo-
vional stability and five of which measure inzellect or openness. These 10 items are
included as part of the bfi data set in the Psych package. Their correlations are shown
in Table 23.6. Using the alpha function on these items yields @ = .70 with an average
intercorrelation of .18 (Table 23.7). This is not particularly impressive, but is not

Table 23.6 The correlation matrix of the 10 BEI items suggests two different clusters of
content. Note that three items (01, O3, O4) have been reverse keyed. The items have been
rearranged to show the structure more clearly. See also the heat map (Figure 23.5). The items are
NI: Get angry easily. N2: Get irritated easily. N3: Have frequent mood swings. N4: Often feel
blue. N5: Panic easily. O1: Am full of ideas. O2: Avoid difficult reading material. O3: Carry the
conversation to a higher level. O4: Spend time reflecting on things. O5: Will not probe deeply into
a subject. The average correlation within the N set of items is .47, and is .24 within the O set.
However, the average inter-item correlation between the two sets is just .035.

lowerCor (reverse.code (keys = c(*01”, *03", “04") , bfi[16:25]))

Variable NI N2 N3 N4 N5 O0I- 03 05 02 o«
N1 1.00

N2 071  1.00

N3 056 055 1.00

N4 040 039 052 1.00

N5 038 035 043 040 1.00

Ol- 005 005 003 005 012 1.00

03- 005 003 003 006 008 040 1.00

05 011 004 0.06 0.04 014 0.24 0.31 1.00

02 013 013 011 0.08 020 021 026 032 1.00

04- -0.08 -0.13 -0.18 -021 -0.11 018 019 0.18 007 1.00
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Table 23.7 Using alphaand splitHalf functions to examine the structure of 10 items from
the Big Five Inventory. Although a = .7 might be thought of as satisfactory, the worst split half
reliability of .14 suggests that making one scale out of these 10 items is probably a mistake. In fact,
the items were chose to represent two relatively independent scales of five items each.

This input

> alpha(bfi[16:25] , keys = c("0O1", "0O3",6"04"))

> splitHalf (bfi[16:25] ,keys = c("01","03","04")})
produces this output

Reliability analysis

Call: alpha(x = bfi[16:25], keys = c("O1", "O3", "04"))

raw_alpha std.alpha G6(smc) average r ase mean sd
0.7 0.68 0.73 0.18 0.011 2.8 0.75

lower alpha upper 95% confidence boundaries

0.68 0.7 0.72

Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average r alpha se

N1 0.64 0.62 0.67 0.16 0.013
N2 0.64 0.63 0.67 0.16 0.013
N3 0.64 0.63 0.68 0.16 0.013
N4 0.66 0.65 0.70 0.17 0.012
N5 0.65 0.64 0.70 0.17 0.012
Ol- 0.69 0.67 0.72 0.18 0.011
02 0.68 0.66 0.72 0.18 0.012
03- 0.69 0.66 0.71 0.18 0.011
04- 0.73 0.72 0.76 0.22 0.010
05 0.69 0.66 0.72 0.18 0.011

Item statistics

n r r.cor r.drop mean sd
N1 2778 0.65 0.6574 0.550 2.9 1.6
N2 2779 0.61 0.6121 0.510 3.5 1.5
N3 2789 0.61 0.5916 0.508 3.2 1.6
N4 2764 0.54 0.4766 0.412 3.2 1.6
N5 2771 0.58 0.5148 0.456 3.0 1.6
0l1- 2778 0.46 0.3486 0.256 2.2 1.1
02 2800 0.49 0.3862 0.305 2.7 1.6
03- 2772 0.48 0.3789 0.270 2.6 1.2
O4- 2786 0.18 0.0086 -0.045 2.1 1.2
O5 2780 0.48 0.3751 0.284 2.5 1.3

Split half reliabilities
Call: splitHalf(r = bfi[16:25], keys = c("O1", "Q3", "04"))

Maximum split half reliability (lambda 4) = 0.78
Guttman lambda 6 = 0.73
Average split half reliability = 0.68
Guttman lambda 3 (alpha) = 0.68
Minimum split half reliability (beta) = 0.14
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Ten items from the bfi data set

1

N1 056 04 038 005 005 0.1 0.13 -o_oaﬂ_

- 0.8
N2 055 0.39 0.35 0.05 0.03 004 0.13 —0.13

- 0.6
N3 - 0.56 043 0.03 0.03 006 0.11 —0.18

- 0.4
N4 - 04 039 052 04 005 006 004 008 -0.21

- 0.2
N5 -{0.38 035 043 0.4 012 008 014 02 -0.11

- 0
01- 4005 005 003 0.05 04 024 021 0.18

- 0.2
03- -4 0.05 0.03 0.03 0.06 0.08 0.31 026 0.19

- 0.4
05 - 0.11 0.04 0.06 0.04 0.14 024 0.3t 018 [ |

+ 06
02 4013 0.3 011 008 02 021 026 032

08

04— —-0.08 -0.13 -0.18 —0.21 -0.11 0.18 0.19 0.18

T T T T T T T T T
N1 N2 N3 N4 N5 O1- 03 05 02 O4

Figure 23.5 The ten items from the bfi data set represent five from the Neuroticism scale and
five from the Openness/Intellect scale. Although the overall @ = .70 is marginally acceptable for a
ten-item inventory, in fact two subsets correlate at .07 with a values of .81 and .61 respectively.
The two-factor structure is easily identifiable by showing the correlations in a “heat map” where
the darker the color, the higher the correlation. Plotted with the cor.plot function.

atypical of personality items and meets an arbitrary standard of an “adequate” a. When
we examine this result more closely, however, we see that a is not very informative. For
ease of demonstration, we reverse code the three items (O1, O3, and O4) that are
flagged by the alpha function as needing to be reverse keyed, and then plot the result-
ing correlaion matrix using a “heat map” plot from the cor.plot function
(Figure 23.5). When this is done we see that we have two sub-scales (as expected),
one measuring (Lack of ) Emotional Stability or Neuroticism, the other measuring
Openness/Intellect. The two sub-scales have a reliabilities separately of .81 and .61,
but only correlate at .07 for a split half reliability of the entire 10 items of .14
(=2x.07/(1 +.07)). Indeed, although the average correlation within the N scale is
47 and within the O scale is .24, the average inter-item correlation between the two
parts is .035. Expressed in terms of factor analysis this is an example of where a test
has two large group factors but a not very large general factor. Indeed, wp, =.17 and
@, =.76. The value of f = .14 found by i clust agrees exactly with the worst split found
by splitHalf.

This was obviously a case with two factors that should not be combined into one
construct even though the a reliability was adequate. How often this happens in pub-
lished studies is hard to know, but unless evidence is provided that the test is indeed
homogeneous, one should treat studies that just report a with great skepticism. If the
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scale is indeed unifactorial then a is quite adequate, but this needs to be shown rather
than assumed.

Other approaches

Reliability is typically considered to be the correlation between two equivalent tests
sampled from a domain of items. It is also a variance decomposition: how much of test
variance is due to signal, how much to noise. Indeed, the ratio of signal to noise is a
simple transformation of the conventional measures of reliability (Equation 23.5).
Recognizing that there are other sources of variation that are systematic but not asso-
ciated with the signal that concerns us leads to the concept of generalizability theory
(Cronbach, Gleser, Nanda, & Rajaratnam, 1972; Cronbach, Rajaratnam, & Gleser,
1963; Gleser, Cronbach, & Rajaratnam, 1965; Rajaratnam, Cronbach, & Gleser,
1965), which essentially takes a variance decomposition approach to the problem of reli-
ability (Brennan, 1997; Shavelson, Webb, & Rowley, 1989).

Generalizability theory: reliability over facets

When doing any study in which there are multiple sources of variance, it is important to
know their relative contributions in order to improve the quality of the measurement.
For example, if student performance is nested within teachers who are nested within
schools, and the tests are given at different times, then all of these terms and their inter-
actions are potential sources of variance in academic performance. If we want to track
changes due to an intervention and correct for errors in reliability, we need to know
what are the relevant sources of variance in performance. Should we increase the num-
ber of students per classroom, the number of classrooms, or the number of schools? Sim-
ilarly, if clinicians rate patients on various symptoms, then we want to know the variance
associated with patients, that with symptoms, that with clinicians, as well as the inter-
actions of each. Is it better to use more clinicians or better to have them each rate more
symptoms? The procedure as discussed by Cronbach et al. (1972) is first to do an anal-
ysis of variance in the generalizability (G) study to estimate all of the variance compo-
nents, then determine which variance components are relevant for the application in the
decision (D) study in which one is trying to use the measure (Cronbach et al., 1972).
Similarly, the components of variance associated with parts of a test can be analyzed
in terms of the generalizability of the entire test.

Consider the data shown in the top of Table 23.8, which has been adapted from Gle-
ser et al. (1965). Twelve patients were rated on six symptoms by two clinicians in a
G study. Clearly the patients differ in their total scores (ranging from 13 to 44), and
the symptoms differ in their severity (ratings ranging from 9 to 35). The two clinicians
seem to agree fairly highly with each other. The ANOVA table (bottom section of
Table 23.8) suggests that there are meaningful interactions of people by items and
judges by items. The analysis of variance approach to the measurement of reliability
focuses on the relevant facets in an experimental design and decomposes these facets
in terms of their contribution to the total variance. The application to the D study uses
knowledge gained in the original G study to consider the sources of variance relevant to
the particular inference. Examining the components of variance, we can see that people
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Taplc 23.8 An example of a generalization study, adapted from Gleser et al. (1965). Twelve
patients are rated by two clinicians on six symptoms with a severity ranging from 0 to 6. A simple
ANQVA provides the sums of squares {not shown) and the mean squares. From these, it is
possible to estimate the respective variance components to be used in the decision stuciy.

The raw data

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6

Patient CI C2 CI C2 CI C2 CI C2 cCI C2 Cl1 C2 Total

1 0 0 2 1 2 0 2 1 1 1
1 2 13
2 0 0 2 1 2 0 1 2 2 1 2 1 14
3 0 0 1 1 3 3 2 1 2 1 1 2 17
4 2 0 2 1 2 2 2 1 2 1 4 1 20
5 0 0 1 2 2 0 2 3 3 3 3 3 22
6 2 0 2 1 2 0 4 1 3 3 3 1 22
7 0 1 3 1 3 1 3 4 2 2 2 3 25
8 0 0 0 1 4 3 3 4 2 3 3 3 26
9 1 2 2 1 3 6 1 3 2 3 2 1 27
10 0 1 2 4 3 3 2 2 3 5 3 1 29
11 3 4 2 2 3 2 4 5 3 3 5 5 41
12 1 1 2 4 4 4 3 3 4 6 6 6 44
Total 9 9 21 20 33 24 29 30 29 32 35 29 300
With associated estimated components of variance
Source af MS Estimated variance components
Persons n-1 11 MS, 7.65 o MS, = MSyi- MSyi + MS, 419
p=
km
Items k-1 5 MS; 1293 7im MS;- MS;;—- MS; + MS, 471
nm
Judges m-1 1 MS;  1.00 & MS;-MS;-MSy; + MS,  -0.14"
=
k
Persons: (n-1)(m-1) 55 MS,; 1.48 - MSI,,'—MS? 427
Items #= £ .
Persons: (n-1)(k-1) 11 MSy,; 177 o MSy- MS, 192
Judges #= m
Items: (k-1)(m-1) 5 MS;  0.87 o MSy- MS, 021
Judges Vij= n
Persons: (mn-1)(k-1) 55 MS, 0.62 V. =
Items: (m-1) Vo = M55 o
Judges

* Negative variance estimates are typically replaced with 0.

differ a great deal ( f’p = .42), but that there is also a great deal of variance associated with

th'c various symptoms being examined ( V; = .47). There is negligible variance associated
with the mean level of the raters (judges), although there is some degree of interaction
between the raters and the patients. There is substantial variation left over in the residual

-

.(V% =.62). If the decision study is concerned with generalizing to the universe of
judges but for the same six symptoms, then the ratio of the expected universe score
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variance (that due to individuals and that due to the interaction of individuals with
items) to the expected observed score variance (which includes all terms involving indi-

419 + .427/6 .
i i =.768. On the oth f al-
viduals) is 419+ 427/6+.192/2+ 621/12 768. On the other hand, if the gener.

ization is to any pair of judges and any set of six items, the ratio will

419
be N5+ 42776+ 19272+ 621713~ 7

A special case of generalizability theory: intraclass correlations and
the reliability of ratings

The components of variance approach associated with generalizability theory is partic-
ularly appropriate when considering the reliability of multiple raters or judges. By form-
ing appropriate ratios of variances, various intraclass correlation coefficients (1CC) may
be found (Shrout & Fleiss, 1979). The term intraciassis used because judges are seen as
indistinguishable members of a “class.” That is, there is no logical way of distinguish-
ing them.

For example, six subjects are given some scores by four different judges (Table 23.9).
The judges differ in their mean leniency and in their range. Values of six different ICC
coefficients, their probability of occurring, and confidence intervals for the estimates are
reported by the ICC function in the psych package. ICC reports the variance between
subjects (MS;), the variance within subjects (MS,,), the variances due to the judges
(MS;), and the variance due to the interaction of judge by subject (MS,). The variance
within subjects is based upon the pooled SS;and the SS,. The reliability estimates from
this generalizability analysis will depend upon how the scores from the judges are to be
used in the decision analysis.

If one wants to know how well the scores of a particular rater will match those of
another particular rater, then the appropriate ICC is that of a single rater (ICCyy).
If, however, raters are selected at random from a population of raters, the measure of
similarity of scores will be ICGC,,. Both of these measures reflect the fact that raters
can differ in their means. If these effects are removed by considering deviations from
each judge’s average rating, then the agreement between two fixed raters will be
ICCjz,;. The effect of pooling raters is seen in the ICCy, ICC;,, and ICC;,, coefficients,
which benefit in the same way as the Spearman—Brown formula predicts an increase in
reliability by pooling items.

Reliability of composites

A common problem is to assess the reliability of a set of tests that are thought to measure
one construct. In this case, it is possible to assess the reliability of each test, to examine
their intercorrelations, and to estimate the reliability of the overall composite score. This
problem is conceptually identical to the estimation of a general factor and group factor
contributions to overall reliability (see Equations 23.28 and 23.29). Consider two tests
X and X, with reliabilities 7., and #,,,, and correlation ¢,,,,. We want to find the
correlation of this composite with another composite of similar subtests and similar cov-
ariances. Unlike the assumption we made of parallel tests (Equation 23.13), here we
assume that the covariances between the subtests are not the same as the true variance
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Table 23.9 The intraclass correlation coefficient (ICC) measures the correlation between multiple
observers when the observations are all of the same class. Itis a special case of generalizability theory.
The ICC is found by doing an analysis of variance to identify the effects due to subjects, judges, and
their interaction. These are combined to form the appropriate ICC. There are at least six different
ICCs, depending upon the type of generalization that is to be made. The data and formulae are
adapted from Shrout and Fleiss (1979). The analysis was done with the ICC function.

Six subjects and four raters... ...produces the following analysis of variance table
Subject J1 J2 J3 J4 Total Source Df 8§ MS Label
S1 1 3 2 6 12 Subjects 5 56.21 11.24 MS,
S2 1 2 6 7 16 Within subjects 18 112.75 6.26 MS,,
S3 2 4 7 6 19 Judges 3 97.46 3249 MS;
S4 2 5 8 9 24 Residuals 15 15.29 1.02 MS,
S5 4 6 8 8 26
S6 5 6 9 10 30
Total 15 26 40 46 127 Number of subjects (#) = 6, number of raters (k) = 4

The ANOVA can then be used to find six different ICCs
Variable Type Formula ICC F dfldf2p
Single raters absolute  ICCy; MS, - MS,, 017 1.79 5 18 0.16
MS, + (R-1)MS,
Single random raters  ICCy; MS, - MS, 0.29 11.03 5 15 0.00
MS; + (k-1)MS, + k(MS;- MS,) /n
Single fixed raters ICCs, MS, - MS, 0.71 11.03 5 15 0.00
MSy + (k~1)MS,
Average raters absolute ICC;, MS, - MS, 044 179 5 18 0.16
MS,
Average random raters  ICGCy; MS, - MS, 062 11.03 5 15 0.00
MS, + (MS:,-—MS,)/n
Average fixed raters ICC;, MS, - MS, 091 11.03 5 15 0.00
MS,

within each subtest, but we do assume that the variances and covariances for the alter-
nate form will match those of the original two subtests:

Vxl Cxlxz pxlx'lvxl Cx1x2
Cxx, : Vx, Capxi | PramyViy | (23.30)
PxxiVx, © Cyyx Vi, Cyx
Caxy | PuxVx, | Cxixy 0 Vg

For simplicity, we consider the standardized solution expressed in correlations rather
than in variances and covariances. Then the correlation between two such tests, and thus
the reliability of the composite test, will be
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Taysy + Pagsy + 27
P +a)(1 +32) = ”"“2(1’:";’%) A% (23.31)

In the case that the reliabilities of the two subtests match their intercorrelation, this is
identical to Equation 23.14. It is perhaps useful to note that a composite made up of two
reliable but unrelated subtests will have a reliability of the average of the two subtests,
even though there is no common factor to the two subtests! For example, a composite of
six items of German speaking ability with six items measuring knowledge of sailboat rac-
ing, with a reliabilities for the two subtests of .8 and intercorrelation of 0, will still be
expected to correlate at .8 (have a reliability of .8) with another 12-item composite
of six paralle] German and six parallel sailing items. The pooled @ reliability of such a
test will be @ = .68, even though wg = 0.

Reliability of difference scores

A related problem is the reliability of a difference score. Replacing the C,,, in
Equation 23.30 with -C,,, leads to a change in sign of the corrections in
Equation 23.31, and we find that the reliability of a difference score is an inverse func-
tion of the correlation between the two tests:

Varsy + Yoy — 275
Tammn-m) = g (23.32)

That is, as the correlation between the two tests tends toward their reliabilities, the
reliability of the difference tends toward 0. This is particularly a problem when one
wants to interpret differential deficits in cognitive processing by finding the difference,
for example, between verbal and spatial abilities, each of which is reliably measured,
but which are also highly correlated. Consider the case where 7,,=.9, 7,=.9, and
7ps=.0. Then while the composite V+S measure has a reliability of

7‘(»+:)(v+;)=%=—g—:g=.9375, the reliability of the difference V-S is

(9-5)(p-35) = 9—;&%);6 = —g =.75. But if 7,,= .8, the reliability of the composite will
increase only slightly (7,4, =.94), but the reliability of the difference scores
decreases considerably (#(;-(5-5 = .5).

Conclusion

All signals are contaminated by noise. The effect of such contamination is to attenuate
latent relationships and to raise the threat of regression artifacts. Perhaps because psy-
chological measures are so threatened with lack of reliability, psychologists have spent
more than a century trying to understand the challenges of reliability theory (Traub,
1997). Even as IRT approaches become more prevalent (Bock, 1997; Embretson &
Hershberger, 1999; Wright, 1997), the study of reliability is a worthwhile enterprise,
for even today there remains confusion about the ways of estimating and correcting
for reliability.
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Appendix
R functions called

The examples in this chapter made use of various functions and data sets in the psych
package (Revelle, 2017) in the R statistical system (R Core Team, 2017). The particular
functions used were:

alpha A function to find @ and A4 as well as total scores for a set of items.

scoreItems A function to find a and ¢ as well as total scores for multiple scales.

splitHalf A function to find all possible split half reliabilities for 16 or fewer items
or to sample >10,000 possible splits for more than 16 items. This
includes the lowest § and highest 4 splits.

fa A function for exploratory factor analysis using maximum likelihood,
minimal residual, or principal axis factor extraction and a large number
of orthogonal and oblique rotations.

Omega A function to find @y, and w; for an item set using exploratory factor
analysis.

omegaSem A function to find gy, and @ for an item set using confirmatory factor
analysis.

Ice A function to find intraclass correlation coefficients.

A number of functions that are convenient for analysis

fa.diagram  Graphically show a factor analysis structure.

cor.plot Show a heat map of correlations.

lowerCor Find and display the lower off-diagonal correlation matrix.
reverse.code Reverse code specified items.

Data sets used for demonstrations

bfi Twenty-five items measuring Extraversions, Agreeableness, Conscientious-
ness, Emotional Stability, and Openness/Intellect. Adapted from the Inter-
national Personality Item Pool (Goldberg, 1999) and administered as part of
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the Synthetic Aperture Personality Assessment (SAPA) project. Number of
observations = 2,800.

ability Sixteen ability items given as part of the SAPA project. See Condon and
Revelle (2014) for details on this and other open source measures of ability.
Number of observations = 1,525.

Sample R code for basic reliability calculations

In order to use the psych package functions, it is necessary to install the package. This
needs to be done only once, but it is recommended to get the latest version from CRAN
at least every six months as R and the psych package get updated. Then, for each new
session of R, it is necessary to make the psych package active by issuing the 1ibrary
command. The following examples use two built-in data sets: bfi, which includes
25 items taken from the International Personality Item Pool and used as part of the
sapa-project.org online personality assessment (Condon & Revelle, 2014), and a set
of 16 ability items also collected as part of sapa-project.org. More detail may be found
in the package vignette “An overview of the psych package,” which is included when
downloading the package. For all functions, if more help is needed, consult the help
menu for that function by ?function (e.g., ?alpha).

More extensive examples are found in the psych package vignette, as well as various
tutorials at the Personality Project: http://personality-project.org/r.

install.packages (list (c("GPArotation", "mvtnorm", "MASS") #do
this once
library (psych) #do this every time R is started

Once the package is installed, a data set to be analyzed may be read into R using the
read.file command, or just read into a text editor/spreadsheet and copied into the clip-
board. The data may be then be pasted into R using the read . clipboard command.
In the listing below, the # symbol denotes a comment and the > symbol an R command.

#first copy the data to the clipboard then

> my.data < - read.clipboard()

#or, if copying from a spreadsheet

> my.data < - read.clipboard.tab()

#for, use a built in data set such as ability

> my.data < - ability

#then, to see if the data have been entered correctly,
#find out the dimensions of the data set and some descriptive
statistics.

> dim(my.data)

> describe (my.data)

> dim(my.data)
1525 16
> describe (my.data)



