
Measurement, Scaling, & Dimensional Analysis
Prof. Adam Enders

ICPSR, 2019

Assignment 4:
Factor Analysis

I start my analysis by assessing the dimensionality of the values items. To reiterate,
dimensionality is contingent on model assumptions about the data generating process, but
most practitioners expect something like visual inspection of a scree plot or examination of
the proportion of shared variance accounted for by each factor. A scree plot of eigenvalues
against factors/dimensions is presented below.

> check.scree <- fa(cor(values), fm = "pa", smc = TRUE, rotate = "none")

> xyplot(check.scree$values ~ 1:10,

+ aspect = 1,

+ type = "b",

+ col = "black",

+ xlab = "Factor",

+ ylab = "Eigenvalue",

+ pch = 16

+ )

Unfortunately, the scree plot does not contain a single, obvious “elbow” that I can use to
make a determination about dimensionality. We observed elbows at 2 and 4 factors,
suggesting either 1 or 3 factor solutions are most appropriate. A parallel analysis suggests
that 3 factors is most appropriate. In the face of (partially) contradictory tests, and (more
importantly) in light of theory, I am going to opt to retain 2 factors. Theoretically, equality
and moral traditionalism are related, but distinct, value constructs, and I expect to observe
latent factors that explain observed responses to the equality and moral traditionalism
survey items.

Next, I re-estimated the common factor model retaining only 2 factors. Since unrotated
factor loadings almost never conform to Thurstone’s principle of “simple structure,” I will
forgo interpreting them substantively. Instead, I will move toward interpretation of the
factor loadings (pattern coefficients) from an orthogonal (varimax) rotation, which are
pictured below in both tabular and graphical form.

We can see from both the relative magnitude of the factor pattern coefficients (“loadings”)
and graphical depiction of the two factors and projected variable vectors (“shadow
vectors”) that the first factor is very highly related to the survey items dealing explicitly
with issues of equality. Indeed, the first 6 values items, all of which are about equality,
have loadings of 0.49 or higher on the first factor. The remaining items, which are about
moral traditionalism, generally speaking, have loadings of 0.27 or less on the first factor.
By a common rule of thumb, loadings of 0.30 or less should be treated with caution (not
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Figure 1: Scree plot of eigenvalues against factors, in order.
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necessarily negligible, probably quite small relative to other loadings). Conversely, the
moral traditionalism items have loadings between 0.37 and 0.76 on the second
orthogonally-rotated factor, and the quality items have loadings between 0.05 and 0.38.
Thus, we might interpret the first factor as “equality,” and the second factor as “moral
traditionalism.”

Standardized loadings (pattern matrix) based upon correlation matrix

PA1 PA2 h2 u2 com

equalopp 0.63 0.05 0.39 0.61 1.0

equalrights 0.51 0.38 0.41 0.59 1.8

equalchance 0.64 0.14 0.42 0.58 1.1

lessequal 0.55 0.33 0.41 0.59 1.6

unequal 0.49 0.19 0.28 0.72 1.3

fewer 0.67 0.07 0.45 0.55 1.0

changing 0.25 0.37 0.20 0.80 1.8

lifestyles 0.07 0.76 0.58 0.42 1.0

standards 0.27 0.41 0.24 0.76 1.7

family 0.07 0.74 0.55 0.45 1.0

PA1 PA2

Proportion Var 0.22 0.18

Cumulative Var 0.22 0.39
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Figure 2: Varimax-rotated (orthogonal) factors from two-factor solution.
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Although the varimax rotation provided factor loadings that aided me in lending some
substantive interpretation to the factors (and, one that is pretty congruent with theory, in
this case), I might want to rotate the factors in an oblique fashion as well. The reasons for
doing so are twofold: 1) on a theoretical level, equality and moral traditionalism are
probably not uncorrelated, and 2) oblique rotations have the potential to provided loading
patterns that conform even better to Thurstone’s “simple structure” principle.

The factor pattern coefficients (loadings) from the promax (oblique) rotation are depicted
below. The substantive interpretation I lended to the factors via an examination of the
loadings from a varimax rotation still hold. The only real difference between loadings is
that some already large loadings increased, and some small loadings decreased. This is
exactly what we’d want in order to achieve simple structure. We want as many loadings as
close to 1 or 0 possible to make substantive interpretation “cleaner.” It also turns out that,
when not restricted to orthogonality, the two factors have a correlation of 0.55. Again, this
makes good theoretical sense, especially since these variables have been recoded such that
larger numerical values denote more conservative responses to the original survey items. At
this point, I could write up my results and terminate my analysis with a discussion of value
structure, or estimate individuals’ positions along the latent factors for a subsequent
statistical analysis.
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Standardized loadings (pattern matrix) based upon correlation matrix

PA1 PA2 h2 u2 com

equalopp 0.70 -0.15 0.39 0.61 1.1

equalrights 0.45 0.26 0.41 0.59 1.6

equalchance 0.68 -0.05 0.42 0.58 1.0

lessequal 0.52 0.19 0.41 0.59 1.3

unequal 0.50 0.05 0.28 0.72 1.0

fewer 0.74 -0.15 0.45 0.55 1.1

changing 0.16 0.34 0.20 0.80 1.4

lifestyles -0.18 0.85 0.58 0.42 1.1

standards 0.17 0.38 0.24 0.76 1.4

family -0.18 0.82 0.55 0.45 1.1

PA1 PA2

Proportion Var 0.22 0.17

Cumulative Var 0.22 0.39

With factor correlations of

PA1 PA2

PA1 1.00 0.55

PA2 0.55 1.00

Finally, I conducted a principal components analysis on the standardized values data using
the “princomp” function.

> pcafit <- princomp(scale(values))

> pcafit

The proportion of variance explained by each principal component is different than the
proportion of variance explained by each factor in the common factor analysis. In the
PCA, the first two components account for about 51% of total variance in the dataset. In
the factor analysis, the first two factors account for approximately 39% of shared or
common variance among the set of variables. We should expect to see some differences
because factor analysis and PCA are designed to explain different “types” of variance.

> summary(pcafit, loadings = TRUE, cutoff = 0)

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6

Standard deviation 1.8820111 1.2312952 1.1011701 0.84290850 0.76138710 0.7592693

Proportion of Variance 0.3542618 0.1516367 0.1212799 0.07106256 0.05798171 0.0576596

Cumulative Proportion 0.3542618 0.5058985 0.6271784 0.69824096 0.75622266 0.8138823

Comp.7 Comp.8 Comp.9 Comp.10

Standard deviation 0.75026080 0.69144973 0.64725302 0.63317000

Proportion of Variance 0.05629949 0.04781908 0.04190136 0.04009781

Cumulative Proportion 0.87018176 0.91800083 0.95990219 1.00000000
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Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10

equalopp -0.308 -0.346 0.214 0.031 0.827 -0.163 -0.118 0.083 0.066 -0.047

equalrights -0.370 -0.035 -0.336 -0.179 -0.105 -0.552 0.106 -0.232 -0.507 -0.281

equalchance -0.341 -0.265 0.227 0.452 -0.326 -0.027 0.147 0.580 -0.263 0.150

lessequal -0.369 -0.108 -0.373 -0.237 -0.123 -0.187 0.248 0.126 0.641 0.343

unequal -0.305 -0.218 -0.406 -0.247 0.046 0.735 -0.143 0.062 -0.255 -0.035

fewer -0.328 -0.335 0.253 0.286 -0.307 0.116 -0.200 -0.636 0.254 -0.130

changing -0.269 0.249 0.483 -0.301 0.057 0.237 0.667 -0.168 -0.093 0.008

lifestyles -0.285 0.507 -0.106 0.317 0.171 0.014 -0.199 -0.242 -0.194 0.620

standards -0.288 0.262 0.382 -0.488 -0.213 -0.099 -0.588 0.243 0.054 -0.047

family -0.280 0.499 -0.177 0.366 0.089 0.112 0.038 0.179 0.282 -0.611

The calculated PCA row scores and estimated factor analysis scores are also somewhat
different. Though the first factor/component scores are fairly highly correlated (0.95), the
second factor/component scores are much more weakly correlated (0.53). With an
orthogonal rotation, this correlation would be much higher. However, we have theoretical
reason to expect correlated factors. In this case, rotation could make a substantive
difference when it comes to inferences using estimated factor scores.

> facscores <- factor.scores(values, promax.factors, method = "Thurstone")$scores

> pcascores <- pcafit$scores[,1:2]

>

> cor(facscores, pcascores)

Comp.1 Comp.2

PA1 -0.9477263 -0.3134376

PA2 -0.8313804 0.5290413

IMPORTANT NOTE: A three factor solution probably fits the data best, and that’s
likely what I’d do if I had no particularly strong theoretical prior. The root mean squared
residual drops from 0.07 in the two factor solution to 0.02 in the three factor solution.
And, I could just as easily interpret the “elbow” in the scree plot at the fourth factor
(meaning I should retain 3 factors) as I could at the second third factor (meaning I should
retain 2 factors). Even a unidimensional, single factor solution seems reasonable, to some
degree. I’ve uses these exact same items in a summated rating scale. Admittedly, a SRS is
not a good test of dimensionality, but the items to perform flawlessly in an item analysis
(i.e., nearly linear, and always monotonic, estimated item response functions; high
Cronbach’s alpha estimate of reliability). DIMENSIONALITY IS INHERENTLY
SUBJECTIVE AND THEORY IS KING.
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