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This paper presents an overview of an approach to the quantitative analysis of qualitative data 
with theoretical and methodological explanations of the two cornerstones of the approach, Alter- 
nating Least Squares and Optimal Scaling. Using these two principles, my colleagues and I have 
extended a variety of analysis procedures originally proposed for quantitative (interval or ratio) 
data to qualitative (nominal or ordinal) data, including additivity analysis and analysis of variance; 
multiple and canonical regression; principal components; common factor and three mode factor 
analysis; and multidimensional scaling. The approach has two advantages: (a) If a least squares 
procedure is known for analyzing quantitative data, it can be extended to qualitative data; and (b) 
the resulting algorithm will be convergent. Three completely worked through examples of the 
additivity analysis procedure and the steps involved in the regression procedures are presented. 

Key words: exploratory data analysis, descriptive data analysis, multivariate data analysis, non- 
metric data analysis, alternating least squares, scaling, data theory. 

Perhaps one of the main impediments to rapid progress in the development of the 
social, behavioral and biological sciences is the omnipresence of qualitative data. All too 
often it is simply impossible to obtain numerical data;  the researcher has the choice of 
qualitative data or no data at all. Many times it is only possible to determine the category 
in which a particular datum falls. The sociologist, for example, obtains categorical infor- 
mation about  the religious affiliation of her respondents; the botanist obtains categorical 
information about the family to which his plants belong; and the psychologist obtains 
categorical information about  the psychosis of her patient. Even in the best of circum- 
stances it is often impossible to obtain anything beyond the order in which the data 
categories fall. When our sociologist observes the amount  of education of the respondents 
in her sample she knows that the observational categories are ordered, but she is unable to 
assign precise numerical values to the categories. When the psychologist obtains rating 
scale judgments, the judgments may reasonably be viewed as ordinal, but not always as 
numerical. 

Given the ubiquity of qualitative data, one can understand the long and persistent 
interest in its quantification. If  one could somehow develop a method for assigning "good" 
numerical values to the data categories, then the data would be quantified and would be 
susceptible to more meaningful analysis. Curiosity about  the topic is nascent in the classical 
work by Yule [1910], and methods for quantification first began to appear around 1940. 
Probably the first widely disseminated procedure was Fisher's "appropriate scoring" tech- 
nique I-Fisher, 1938, pp. 285-298] which was introduced at about  the same time as a 
method proposed by Gut tman  [1941]. Several authors worked on the problem in the early 
50's [Burr, 1950, 1953; Hayashi,  1950; Gut tman,  1953] with this work being summarized 
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by Torgerson [1958, pp. 338-345]. Much work has occurred recently [Benzicri, 1973, 1977; 
de Leeuw, 1973; Mardia, Kent & Bibby, 1979; Nishisato, 1980; Saito, 1973; Saporta, 1975; 
Tenenhaus, Note 1 & Note 2]. 

In this paper we refer to the process of quantifying qualitative data as "optimal 
scaling," a term first introduced by Bock [1960]. This is our definition: 

Optimal scaling is a data analysis technique which assigns numerical values to observation categor- 
ies in a way which maximizes the relation between the observations and the data analysis model 
while respecting the measurement character of the data. 

Note that this is a very general definition: There is no precise specification of the nature of 
the model, nor is there precise specification of the measurement character of the data. 
Working with this definition of optimal scaling, we have developed a ~roup of programs for 
quantifying qualitative data (see Table 1). The programs permit the data to have a variety of 
measurement characteristics, and permit data analysis with a variety of models. We refer to 
these programs as ALSOS programs since they use the Alternating Least Squares (ALS) 
approach to Optimal Scaling (OS). 

The ALSOS programs describe qualitative data by quantitative models falling into 
three general classes: (a) The General Linear Model; (b) The Component (Factor) model; 
and (c) The General Euclidean Model. As you can see in Table 1, the G L M  programs are 
specifically oriented towards analysis of variance (MANOVALS, ADDALS and WAD- 
DALS), regression analysis (MORALS, CORALS, CANALS, OVERALS), discriminant 
analysis (CRIMINALS) and path analysis (PATHALS). The component programs perform 
principal components analysis (PRINCIPALS and HOMALS); three-mode component 
(factor) analysis (ALSCOMP and TUCKALS); and common-factor analysis (FACTALS). 
The General Euclidean model is fit by ALSCAL and GEMSCAL. 

For most of the ALSOS programs the data may be defined at the binary, nominal, 
ordinal or interval levels of measurement (and the ratio level with the General Euclidean 
model programs), and may be thought of as having been generated by either a discrete or 
continuous underlying process. All of these programs also permit arbitrary patterns of 
missing data. Some permit boundary or range restrictions on the values assigned to the 
observation categories, and some permit the use of partial orders with ordinal data. Infor- 
mation on obtaining these programs may be obtained as indicated on Table 1. 

As we will show in this paper, the ALSOS approach to algorithm construction has one 
very important implication for data analysis: 

If a procedure is known for obtaining a least squares description of numerical (interval or ratio 
measurement level) data then an ALSOS algorithm can be constructed to obtain a least squares 
description of qualitative data (having a variety of measurement characteristics). 

1. Overview 

Each of the ALSOS programs optimizes an objective loss function by using an 
algorithm based on the alternating least squares (ALS) and optimal scaling (OS) principles. 

The OS principle involves viewing observations as categorical, and then representing 
each observation category by a parameter. This parameter is subject to constraints implied 
by the measurement characteristics of the variable (e.g., order constraints for ordinal 
variables). 

The ALS principle involves dividing all of the parameters into two mutually exclusive 
and exhaustive subsets: (a) the parameters of the model; and (b) the parameters of the data 
(called optimal scaling parameters). We then proceed to optimize a loss function by alter- 
nately optimizing with respect to one subset, then the other (see Figure 1). Note that each 
subset may itself consist of several subsets which are mutually exclusive and exhaustive. For 
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Table I 

ALSOS Programs 

Source ,, primary Reference 

UNC de Leeuw, Young & 
Takane (1976) 

Data 

Two or three way 
tables. Nonorthogo- 
hal and incomplete 
designs permitted. 

Same as ADDALS UNC Takane, Young & 
de Leeuw (1980) 

Multi-way tables RUL Gifi (1981) 

Mixed measurement UNC Young, de Leeuw & 
level multivariate or Takane (1976) 
data RUL 

Multiple set mixed RUL Gifi (1981) 
measurement level 
multivariate data 

Mixed measurement RUL Gifi (1981) 
level predictors 

Mixed measurement RUL Gifi (1981) 
level multivariate 
data 

Mixed measurement UNC Young, Takane & 
level multivariate or de Leeuw (1978) 
data RUL 

Multivariate nominal RUL de Leeuw & van 
data Rijkevorsel (1976) 

Mixed measurement UNC Sands & Young 1978 
level multivariate or de Leeuw & van 
data RUL Rijkevorsel (1976) 

Mixed measurement UNC Takane, Young & 
level multivariate de Leeuw (1978) 
data 

Similarity data UNC Takane, Young & 
de Leeuw (1977) 

Similarity data UNC Young, Null & 
De Soete (Note 5) 

Note: The column headed "Source" in Table I indicates the address from which the 
program is available, as follows: UNC: Forrest W. Young, Psychometric 
Laboratory, Davie Hall 013-A, University of North Carolina, Chapel H i l l ,  
NC 27514, U.S.A.; and RUL: Jan de Leeuw, Data Theory, Rijksuniversiteit 
te Leiden, Breestraat 70, 2311CS Leiden, The Netherlands. 

example, in ALSCAL the model has several parameter  subsets, and in the multivariate 
programs there is a subset of data parameters for each variable. 

The optimization proceeds by obtaining the least squares estimates of the parameters 
in one subset while assuming that the parameters in all other subsets are constants. We call 
this a conditional least squares estimate, since the least squares nature is conditional on the 
values of the parameters in the other subsets. Once we have obtained conditional least 
squares estimates we immediately replace the old estimates of these parameters by the new 
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FIGURE I 
Flow of the ALSOS algorithms 

estimates. We then switch to another subset of parameters and obtain their conditional 
least squares estimates. We alternately obtain conditional least squares estimates of the 
parameters in the model subsets, then in the data subsets, until convergence (which is 
assured under certain conditions discussed in later portions of this paper) is closely ap- 
proached. The flow of an ALSOS procedure is diagrammed in Figure 1. 

Certain strong correspondences exist between an ALSOS procedure and the NILES 
approach to algorithm construction developed by Wold and Lyttkens [1969], and the class 
of numerical analysis algorithms known as successive block algorithms [Hageman & 
Porsching, 1975]. The main difference between these metric algorithms and the nonmetric 
ALSOS algorithms is the optimal scaling features of the ALSOS algorithm. The scaling 
feature permits the analysis of qualitative data, whereas the previous procedures can only 
analyze quantitative data. 

There are also strong connections between the nonmetric algorithms developed by 
Kruskal [1964, 1965], Roskam [1968], Young [1972], and others. The main difference 
between these gradient (non-ALS) procedures and ALSOS algorithms is the least squares 
feature of the model estimation phase. 

One of the main advantages of combining the ALS and OS principles is that the OS 
phase of an ALSOS algorithm does not need to know the type of model involved in the 
analysis. A parallel and equally important advantage is that the model estimation phase 
does not need to know anything about the measurement characteristics of the data. 

The practical effect of these aspects of ALSOS procedures is enormous: If a least 
squares procedure exists for fitting a particular model to numerical (i.e, interval or ratio) 
data, then we can use that procedure in combination with the OS procedures to be dis- 
cussed to develop an ALSOS algorithm for fitting the model to qualitative data. That's all 
there is to it ! If we can obtain a least squares description of numerical data we can obtain a 
least squares description of qualitative data. All we have to do is alternate the numerical 
least squares procedure with the OS procedure which is suited to the measurement charac- 
teristics of the data being analyzed. 

There is one hooker: The ALSOS procedure does not guarantee convergence on the 
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globally least squares solution, rather it guarantees convergence on a particular type of 
local least squares solution. The particular local optimum upon which an ALSOS pro- 
cedure converges is determined by only one thing, the initialization process. It is possible 
that two different types of initialization procedures will lead an ALSOS procedure into two 
different local optima, perhaps giving radically different results. For this reason, and since 
each phase in an ALSOS procedure is a conditional least squares solution (conditional on 
the current values of the parameters in the other subset), we refer to the convergence point 
of an ALSOS procedure as the "conditional global optimum," a somewhat grandiose way 
of emphasizing that the convergence point is more than simply a local optimum, but may 
not be the overall global optimum. [The convergence properties of an ALSOS algorithm 
have been discussed by de Leeuw, Young and Takane (1976) and de Leeuw (Note 3) who 
prove that such a procedure is indeed convergent if (a) the function being optimized is 
continuous; and (b) if each phase or subphase of the algorithm optimizes the function.] 

Since the initialization procedure is of such importance in the overall process, it is 
important to employ the best initialization that is available. In all the ALSOS programs we 
define best initialization to mean that we should optimize the fit of the model to the raw 
data. Thus, each ALSOS program is initiated by applying a least squares procedure to the 
raw data under the assumption that the raw data are quantitative, as the user has coded 
them. (Note that a different coding of the data, while still consistent with the data's measure- 
ment characteristics, may provide a better start. The start is not "best" in this sense. There is 
evidence that for ALSCAL, this procedure reduces the frequency of local minimum sol- 
utions [Young & Null, 1978]. 

Once the process is initiated, the procedure for obtaining the conditional least squares 
estimates of the model parameters is the procedure used to obtain ordinary least squares 
estimates when the data are numerical. The only difference is that the procedure is applied 
to the optimally scaled data (which is numerical, after all) instead of to the raw data. Since 
we are applying the model estimation procedure to the optimally scaled data, we are not 
violating the measurement assumptions of the raw data, whatever they might be. We are 
not even using the raw data in the model estimation phase, thus we do not need to know its 
measurement characteristics. Equally important, we do not have to think up a new way of 
trying to fit the model to qualitative data, we simply use existing procedures for fitting it to 
quantitative data. 

2. Optimal Scaling 

Since the ALS aspects of our work are by now fairly traditional [Wold & Lyttkens, 
1969], we do not spend any effort to explicate them. Rather, we fully discuss the OS aspects 
in the remainder of this paper. 

These unique OS aspects of our work permit our ALSOS algorithms to be very flexible 
in the assumptions the user can make concerning the measurement characteristics of 
his/her data, as reviewed above. 

2.1 Measurement Theory 

To appreciate fully the OS aspect of our work we must first discuss the theoretical 
foundations of our project, our view of measurement theory. 

We begin by emphasizing a concept which is crucial to our work: It is our view that all 
observations are categorical. That is, we view an observation variable as consisting of 
observations which fall into a variety of categories, such that all observations in a particular 
category are empirically equivalent. Furthermore, we take this "categorical" view re- 
gardless of the variable's measurement characteristics. 

Put more simply, it is our view that the observational process delivers observations 
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which are categorical because of the finite precision of the measurement and observation 
process, if for no other reason. For  example, if one is measuring temperature with an 
ordinary thermometer (which is likely to generate interval level observations reasonably 
assumed to reflect a continuous process) it is doubtful whether the degrees are reported 
with any more precision than whole degrees. Thus, the observation is categorical; there are 
a very large (indeed infinite) number of different temperatures which would all be reported 
as say, 40 °. Therefore, we say that the observation of 40 ° is categorical. 

At this point we need to define a column vector of n raw observations. We denote this 
observation vector as o, with general element o~. (Boldface lower case letters refer to column 
vectors, and italicized lower case letters to scalars.) We also define the model estimates ~, 
with general element 2i, and the optimally scaled observations z*, with general element z*. 
The elements of o are organized so that all observations in a particular category are 
contiguous. The elements of ~ and z* are organized in a fashion having a one to one 
correspondence with the elements of o. The element z* is the parameter representing the 
observation oi. The vector 2 is called the "model estimates" because it is the model's 
estimates, in a least squares sense, of the optimally scaled data z*. 

With these definitions we can formally represent the OS problem as a transformation 
problem, as follows. We wish to obtain a transformation g (script letters indicate trans- 
formations) of the raw observations which generates the optimally scaled observations, 

g[o] = [z*], (1) 

where the precise definition of I is a function of the measurement characteristics of the 
observations, and is such that a least squares relationship will exist between the model's 
estimates of the scaled data (~) and the actual scaled data (z*), given that the measurement 
characteristics of o are strictly maintained. The numerical value assigned to z*, then, is the 
optimal parameter value for the observation o~. 

Various types of restrictions are placed on the transformation g, with the type of 
restriction depending on the measurement characteristics of the data. We distinguish three 
types of measurement restrictions, termed measurement level, measurement process, and 
measurement conditionality. As we will see, these three types concern three different aspects 
of the observation categories. Measurement process concerns the relationships among a l lof  
the observations within a single category; measurement level concerns the relationships 
among all of the observations between different categories; and measurement conditionality 
concerns the relationships within sets of categories. Each of the several types of processes, 
levels and conditionalities implies a different set of restraints placed on the transformation g 
(1). 

In Tables 2, 3, and 4 we summarize the six types of measurement resulting from 
combining three levels with two processes. A verbal description is given in Table 2, the 
mathematical restrictions on g are given in Table 3, and the optimal scaling methods are 
given in Table 4. Measurement conditionality is discussed at the end of this section. 

Measurement process. There are two types of measurement process restrictions, one 
invoked when we assume that the generating process is discrete, and the other when we 
assume that it is continuous. One or the other assumption must always be made. If we 
believe that the process is discrete (sex is an example of a discrete underlying process) then 
all observations in a particular category (female or male) should be represented by the same 
real number after the transformation g~ (the superscript indicates discreteness) has been 
made. On the other hand, if we adopt the continuous assumption (as we probably should for 
a weight variable), then each of the observations within a particular category (97.2 Kg., for 
example) should be represented by a real number selected from a closed interval of real 
numbers. In the former case the discrete nature of the process is reflected by the fact that we 
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Level Process 

Nominal 

Ordinal 

Numerical 

Discrete 

Observation categories 
represented by a single 
real number 

Observation categories are 
ordered and tied observa- 
tions remain tied 

Observation categories are 
functionally related and 
all observations are 
precise 

Continuous 

Observation categories 
represented by a closed 
interval of real numbers 

Observation categories are 
ordered but tied observa- 
tions become untied 

Observation categories are 
functionally related but 
all observations are 
imprecise 

choose a single (discrete) number to represent all observations in the category; whereas in 
the latter case the continuity of the process is reflected by the fact that we choose real 
numbers from a closed (continuous) interval of real numbers. Formally, we define the two 
restrictions as follows: The discrete restriction is 

~ :  (o~ ~ o ~ ) - ,  (z~' = z*.) (2) 

Table 3 

Measurement restrictions 
for six types of measurement 

Level Process 

Nominal 
£d: 

Discrete 
|, ,, 

(oi~Om)+( z .*=z* ) 
1 m 

£c : 

Continuous 

- ~z*l ~-(zi=Zm) 

Ordinal 

Numerical 

t d° : 

£dp : 
(°i~°m)~(zg=z*)l m 

P 
z*l = Z 6qo q 

q=O 

£co 

£cp : 

- 

- Iz I + 

Z <-(zi:zm) 

P 
z~ = Z ~qO} l 
l q=O 
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Table 4 

Optimal scaling methods for 
six types of measurement 

Level Process 

Nominal 

Discrete 

Means of model elements 

Ordinal Kruskal's secondary mono- 
tonic transformations 

Numerical Simple linear (or non- 
linear) regression 

Continuous 

Means of model estimates, 
followed by primary mono- 
tonic transformation 

Kruskal's primary mono- 
tonic transformations 

Simple linear (or non- 
linear) regression 
followed by boundary 
estimation 

where --~ indicates empirical equivalence (i.e., membership in the same category). The 
continuous restriction is represented as 

~c: (ol ~ ore)--, ( z7  = z2,) <_ (z.*J -< (z~+ = z'+) (3) 

where z~- and z~ + are the lower and upper bounds of the interval of real numbers. Note that 
one of the implications of empirical (categorical) equivalence is that the upper and lower 
boundaries of all observations in a particular category are the same for all the observations. 
Thus, the boundaries are more correctly thought of as applying to the categories rather 
than the observations, but to denote this would involve a somewhat more complicated 
notational system. Note also that for all observations in a particular category the corre- 
sponding optimally scaled observations are required to fall in the interval but need not be 
equal. 

Measurement level. We now turn to the second set of restraints on the several measure- 
ment transformations, the level restraints. With these restraints we determine the nature of 
the allowable transformations t so that they correspond to the assumed level of measure- 
ment of the observation variables. There are, of course, a variety of different restraints 
which might be of interest, but we only mention three here. With these three we can satisfy 
the characteristics of Stevens' four measurement levels, as well as the measurement level 
characteristics of missing data, and of binary data. 

For  the nominal level of measurement, and for data that is either missing or are binary, 
we introduce no measurement-level restraints. The characteristics of these three types of 
measurement are completely specified by the measurement process restraints. The reason 
that we need no additional restraints is that for these levels we only know the category of an 
observation. We know nothing about the relationships of observations in different categor- 
ies. Thus, these levels are completely specified by restrictions imposed within observation 
categories, there being no restrictions on the relationships which may exist among observ- 
ations in different categories. 

The difference between nominal, binary and missing data is in the number of observ- 
ation categories. For  nominal data there must be at least three observation categories. 
When there are only two observation categories the data are binary. (Binary data are 
somewhat anomolous since they may be thought of as being at any level of measurement. 
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Since the higher levels of measurement all involve additional between-category restrictions, 
it is most parsimonious to describe binary data as being at the nominal level.) 

Missin9 data, on the other hand, can be viewed as a particular type of data about 
which we know only one thing: It is missing. Thus, we may view missing data as nominal 
but having only one category of(non)observation, the "missing" category. It would appear 
that we could simply call "missing" data an additional category of our nominal data. 
However, this does not suffice when we have data missing from a set of observations defined 
at some level of measurement other than nominal. When we introduce the notion of 
measurement conditionality at the end of this section, we will be able to completely clarify 
the manner in which we view missing data. Until then, we must be satisfied by simply 
viewing missing data as being defined at the nominal level, and as having only one "observ- 
ation" category. 

It should be mentioned that data consisting entirely of only one observation category 
are, logically, equivalent to missing data in their measurement level characteristics. That is, 
they have no measurement level at all. This is true regardless of the supposed measurement 
level of the data. Thus, to define the measurement level of a set of observations, the absolute 
minimum number of observation categories is two, and there must be at least three for any 
level of measurement above the nominal level. 

For the nominal measurement level, and for binary and missing data, there are no level 
restraints: The characteristics of these data are completely specified by the process res- 
traints. Since there are two types of processes, there are two types of nominal, binary and 
missing observations. This discrete-nominal level is quite common, with the sex of a person 
being such a variable. It is clear that this is a nominal (binary) variable, and it is reasonable 
to assume that the two observation categories (male and female) are generated by a discrete 
underlying process. An example of a continuous-nominal measurement variable is that of 
color words. The various observation categories may be blue, red, yellow, green, etc., which, 
while nominal, actually represent a continuous underlying process (wave length). Even 
missing data comes in two varieties: Discrete-missing data implies that the observer be- 
lieves all the observations would have been identical had they been observed; whereas 
continuous-missing data implies that they wouldn't have been identical. More will be said 
on this at the end of this section. 

For ordinal variables, we require, in addition to the process restraints, that the real 
numbers assigned to observations in different categories represent the order of the empirical 
observations: 

t°: (oi -< o , . ) ~  (z* _ z*) (4) 

where the superscript on go indicates the order restriction, and where ~( indicates empiri- 
cal order. The problem of what to do about ties has already been handled by the process 
notion. If the variable is discrete-ordinal (ldo), then tied observations remain tied after 
transformation, whereas, for continuous-ordinal (g~o) variables, tied observations may be 
untied after transformation. The discrete-ordinal case is well exemplified by data obtained 
from subjects who order n - 1 kinship terms according to their similarity to the n'th term. 
A continuous-ordinal variable might be the income level of one's father, as it is usually 
obtained in survey data. The observation categories might be "less than $5,000," "$5,000- 
10,000," "$I0,000-20,000," and "more than $20,000," and one can imagine the continuous 
process by which such ordered categories are produced. 

For numerical (interval or ratio) variables we require that the real numbers assigned to 
the observations be functionally related to the observations. For example (other examples 
are easily constructed) we might require that the optimally scaled and raw observations be 
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related by some polynomial rule: 

p 

o :  z~ = Z ~oI.  (5) 
q = 0  

If p = 2, for example, we have a quadratic relationship between the optimally scaled and 
raw observations. When p = 1 we obtain the familiar linear relationships used with interval 
level variables (and with ratio level variables when go = 13). 

It is important to note that with numerical variables the role played by the discrete- 
continuous distinction is that of measurement precision. If we think that our observations 
are perfectly precise, then we wish that all observations should be related to the optimally 
scaled observations by exactly the function specified by (5). However, if we think that there 
is some lack of precision in the measurement situation, then we may wish to let the 
optimally scaled observations "wobble" around the function specified by (5)just a bit. The 
former case corresponds to the discrete-interval or discrete-ratio case in which we allow no 
within observation observation category variation, and the latter case corresponds to the 
continuous-interval or continuous-ratio case in which we do permit some within category 
variation. Note that this notion is sensible even when there is only one observation in a 
particular observation category, as is usually the case. 

Let us re-emphasize that even though the data are viewed as categorical, it is just as 
possible to obtain a categorical datum which is measured at the interval level of measure- 
ment but which was generated by a discrete process, as it is possible to obtain a categorical 
datum which is measured at the nominal level of measurement but which was generated by 
a continuous process. There is no necessary relationship between the presumed underlying 
generating process and the level of measurement, and in any case the datum is categorical. 

Measurement conditionality. The final type of restraints placed on the measurement 
transformations L are referred to as conditionality restraints. These restraints operate on 
the relationships which may exist among observations within sets of observation categories. 
As has been emphasized by Coombs [1964], it may be, for a particular set of data, that the 
measurement characteristics of the observations are conditional on some aspect of the 
empirical situation. When this is the case it follows that some of the observations cannot be 
meaningfully compared with other observations. Thus, we should subdivide all of the 
observations into groups such that those observations within a group are those which can 
be meaningfully compared to each other. Then we must restrict the measurement level and 
process transformations so that they only apply to observations within a group, not be- 
tween groups. We call such groups partitions, since they partition the data into subsets, and 
we redefine the restrictions given by (2) through (5) so that they only enforce the desired 
relationships to exist among the observations within a partition. There are no restrictions 
enforced on the relationships which may exist among observations which are in different 
partitions. 

There are several types of conditionality which can be distinguished, some of which are 
relevant to certain kinds of data analysis, others to other kinds. We do not go into them in 
detail here, but choose to mention only two. 

One type, matrix conditional, is found in the following example. If we have asked 
several subjects to judge the similarity of all pairs of a set of stimuli, then we usually are 
unwilling to compare one subject's responses with another. That is, one subject's response 
of 7 (on, say, a similarity scale of 1 through 9) cannot be said to represent more similarity 
than another subject's response of 6. Furthermore, we can't say that one subject's response 
category of 6 means the same as another subject's category of 6. We just are not sure that 
the several subjects are using the response scale in identical ways. In fact, we are pretty sure 
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that they do not use the scale identically. Thus, we say that the "meaning" of the measure- 
ments are conditional on which subject (matrix) is responding. Thus, we call this type of 
data matrix-conditional. Furthermore, for matrix-conditional data each matrix is a parti- 
tion of the data. 

Another common type of conditionality, column conditional, is exemplified by multi- 
variate data. In multivariate data each column of data represents a measurement variable 
(such as the sex of a person, the person's socio-economic level, the person's height and 
weight, her IQ score, etc.). The important notion is that multivariate data are (essentially 
always) column conditional. 

This example is a nice example of the fact that the measurement characteristics of one 
partition do not have to correspond to those of another partition. One of the variables is 
sex, which is binary; another is socio-economic level, which is probably continuous- 
ordinal; a third is height and a fourth weight, which are both ratio and may be reasonably 
thought of as discrete; and a fifth was IQ score, which may be either ordinal or interval. 

Formally, we state that the domain of the measurement transformation l is dependent 
on the type of conditionality. For matrix-conditional data the domain is a single matrix of 
data and the transformation is denoted gk to indicate that there is a separate transformation 
for each matrix k. For column-conditional data the domain is a single column of a single 
matrix, and the transformation is denoted l~k. The previous discussion of measurement 
level and process was implicitly in terms of unconditional data. While all of the definitions 
of level and process must be modified appropriately, we do not explicate these modifi- 
cations as they are both lengthy and obvious. 

Missing data. We can now fully explicate our missing data notion. We have already 
stated that missing data can be viewed as being defined at the nominal level, and as having 
only one "observation" category (that of nonobservation). We noted, however, that we 
needed one more concept, that of conditionality, to fully explain our missing data notion. 
Thus, the full idea of just what missing data is can now be stated. We view missing data as 
observation cells which form their own separate partitions, called, naturally enough, the 
missing data partitions. All of the missing "observations" in a particular missing data 
partition fall in one observation category, the "missing" category. 

Since the missing data partition has only one category of observation, and since the 
notion of measurement level refers to restraints between categories, none of the measure- 
ment level restraints [Eqs. (4) and (5)] apply. Thus, there is no measurement level for 
missing data. However, since the notion of measurement process refers to restraints within 
observation categories, the notion of the measurement process does apply to  missing data. 
While this may sound a bit strange, it in fact corresponds to a common concern that a 
researcher has when faced with what to do about several missing observations. He wonders 
what it is that caused the missing observations. One of the possibilities is to assume that 
every missing observation was caused by a common underlying process, whereas another 
possibility is to assume that the missing observations were caused by a variety of processes. 
The former view, which says that a single thing caused the data to be missing, implies that 
all of the missing observations should be assigned a single number by the optimal scaling. 
Thus, this view corresponds with what we call discrete missing data. The latter view, that a 
variety of things contributed to the missing observations, implies that a continuum of 
numbers ought to be assigned. Thus, this view is what we think of as continuous missing 
data. 

Finally, as implied above when we said that there can be several missing data parti- 
tions, we wish to point out that missing data can be conditional. For  example, if we have 
multivariate data and there are data missing on two different variables, we would probably 
assign the missing observations to two separate partitions, one for each variable. 
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2.2 Indicator Matrices 

in the previous section we discussed our measurement theory from the perspective of 
restraints imposed on data transformations. In this section we discuss our theory from a 
different perspective, that provided by conceiving of the data as being represented by 
parameters whose values we wish to estimate 

Now it may sound a bit unusual to discuss data parameters. After all, we always 
associate parameters with models. However, with qualitative data it is useful to think of 
each observation category as being represented by a parameter whose value we wish to 
estimate in some optimal way. (Girl, 1981, explores the possibility of several parameters per 
category.) The value assigned to each observation category parameter is the "quan- 
tification" of that category. After determining the best parameter values we have "optimally 
scaled" the data. 

To restate the goal of optimal scaling in this new light: We wish to estimate values for 
the data (observation category) parameters so that two characteristics are met: First, the 
estimation must perfectly satisfy the stated measurement restrictions; and second, it must 
yield a least squares relationship to the model, given that the measurement restrictions are 
perfectly satisfied, and given certain normalization considerations. 

To discuss optimal scaling from the viewpoint of estimating data parameters we must 
introduce one new notion, called the indicator matrix. This matrix represents the data of a 
specified partition in a way which indicates the category in which each observation resides. 
There is an indicator matrix for each partition. 

For  now we define the indicator matrix Up as an (n x no) binary matrix with a row for 
each of the n observations in partition p, and a column for each of the nc categories. (This 
definition will be generalized below.) The elements of Up indicate category membership: 

{10 i f f o , ~ c a t e g o r y c  
Upic = otherwise 

In the remainder of this section we drop the p from Up, but it is to be understood that 
we are discussing only the data for a specific partition, and that the discussion applies to 
any and all partitions with no loss of generality. 

Nominal data. With the definition of U given above we can look at the [dn (discrete- 
nominal) transformation as a very simple parameter estimation process. In fact, it is 
Fisher's optimal scoring technique [Fisher, 1938, pp. 285-298] which consists of estimating 
the value of the optimally scaled datum z* as the mean of all the model estimates 2~ which 
correspond to those observations oj that are in the same category as o~. Since thez* are the 
mean of the appropriate ~ ,  we minimize the residuals IIi - z* lI under the t dn measurement 
restrictions. However, the index we wish to minimize is a normalized residuals index, 
Kruskal's [1964] Stress index: 

S = [l l~- z*lllX/2" llz*,l (6) 

Because z* appears in both the denominator and numerator, S is not minimized by the 
values which minimize its numerator. A normalization must be made of the z* to minimize 
(6), as discussed in section 2.4. To emphasize this aspect, we introduce the unnormalized 
scaled data, denoted z u, which minimize the unnormalized residuals II ~ - z u II, and we reserve 
z* for the normalized scaled data which minimize (6). Formally, z u is defined as 

~d,: z u = U(U'U)- 1U'i, (7) 

where U is defined above. Note that U'U is a diagonal (no x no) matrix with a row and 
column for each observation category, and with the number of observations in each cat- 
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egory on the diagonal. Also, U'~. is an n c element column vector with the sum of the ~j's as 
its elements. Finally, (U 'U)- Iu '~  is an n c element column vector with the mean of the 
appropriate ~'s as its elements. These are the unnormalized least squares estimates of each 
of the nc data parameters for the partition under consideration. 

The continuous-nominal situation is more complex than the discrete-nominal situ- 
ations. The added complexity is introduced because the continuous-nominal situation, as 
discussed to this point, involves no measurement restrictions. For t¢n we impose the con- 
tinuous process restrictions It n, (3)] that each optimally scaled observation should reside in 
some interval, and we have placed no restrictions on the formation of the intervals. Thus, 
we could select arbitrarily large upper and lower boundaries which would permit all 
optimally scaled observations to be set equal to all raw observations, thus minimizing the 
squared differences trivially and totally. 

Naturally, such a process is meaningless. Therefore, we propose an alternative process 
which yields nonoverlapping contiguous intervals, thus disallowing the trivial possibilities 
outlined above. 

The estimation procedure for the continuous-nominal transformation g~n involves the 
following two-phase process: In the first phase we treat the data as though they are 
discrete-nominal and perform a complete ALSOS analysis based on this assumption. When 
this process has terminated we enter the second phase in which we treat the data as though 
they are continuous-ordinal (see below) and perform a second complete ALSOS analysis. 
Note that in neither phase do we actually assume that the data are continuous-nominal. 
However, the assumptions that are used do not violate the continuous-nominal nature of 
the data. In the first phase we use the categorical information to obtain the least squares 
quantification of each category. In the second phase the quantification from the first phase 
is used to define an order for the observation categories, which is then used to define 
interval boundaries. 

Three things should be noted about this two-phase procedure. First, it yields a least 
squares quantification which is consistent with, but stricter than, the continuous-nominal 
restrictions discussed above. Specifically, the procedure yields nonoverlapping intervals, 
whereas the restrictions discussed above would permit overlapping intervals. Second, the 
procedure outlined here is not the same as the pseudo-ordinal procedure discussed by de 
Leeuw, Young & Takane [1976], but is a newer procedure which avoids the divergence 
problems mentioned in that paper. Third, the procedure is convergent but not strictly least 
squares because it may converge on a nonoptimal interval order. The only way to avoid 
this problem is to try all possible interval orders, a prohibitively expensive process. 

Ordinal data. The estimation procedures for the ordinal transformations L d° and l ~° 
necessitate extending the indicator matrix definition given above. We still define U as a 
binary matrix, but it is now an n x nb matrix, where nb is the number of blocks required to 
impose the ordinal restriction. An element of U indicates block membership in a fashion 
parallel to the indication of category membership for nominal level. 

For the discrete ordinal situation nb is never greater than n~ (the number of categories) 
and U represents a merging of observation categories. Given the proper U, Young 1-1975a] 
has shown that 

~°:  z" = U(U'U)-~U'~. (8) 

Here U is constructed by Kruskal's [1964] secondary least squares montonic trans- 
formation, which he proved to be least squares. U indicates which categories must be 
merged (blocked) to satisfy the ordinal restrictions. Note that U'U is a diagonal (nb x nb) 
matrix containing the number of observations in each block on its diagonal. Also, 
(U'U)-1U' i  is the nb element vector of the unnormalized optimal scale values that are the 
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least squares parameter values which preserve the data's discrete-ordinal measurement 
characteristics. An example is given in section 3.1. 

For  the continuous-ordinal situation, nb may or may not be greater than no. U indi- 
cates which observations (not categories) must be merged (blocked) in order to preserve the 
ordinal restrictions. Given the proper U, Young [1975a] has shown that 

gco: z" = U(U 'U) - IU 'P i ,  (9) 

where U and P are constructed by Kruskal's [1964] primary least squares monotonic 
transformation [see de Leeuw, 1975, for a least squares proof, and de Leeuw, 1977a, for an 
additional ordinal transformation]. The matrix P is a binary (n x n) block-diagonal permu- 
tation matrix. It has n b blocks, each of which has an order equal to the corresponding 
element of U'U. Each block is a permutation matrix having a single one in each row and 
column. P has only zeros outside of the blocks. The matrix U'U is interpreted as before 
(number of observations in each block), and (U'U)-1 U'PI  contains the unnormalized least 
squares observation category parameter estimates. 

In section 3.1 we present detailed examples of U for gdn and for gdo, as well as U and P 
for I c°. The examples also present the process by which U (and P) are constructed for the 
ordinal situations. It is very important to note that only for gdn do we know U before the 
analysis takes place: It is simply the category structure of the data. For  the ordinal situ- 
ations we must determine U (and P) so that the ordinal properties of the data are main- 
tained. In these cases U (and P) are not known prior to the analysis, but must be solved for! 
They are variables to be solved for, whereas U is a constant when the data are discrete- 
nominal. 

This is a crucial difference with several implications. One implication is that the 
solution for z u is much slower and more complex for ordinal data. Another implication is 
that the ability to determine degrees-of-freedom is lost with ordinal data. The latter impli- 
cation implies in turn that inferential procedures are more difficult to determine for ordinal 
data, as is well known. 

Missin# data. When we have missing data the empty observation cells are removed 
from whatever partition they were in and placed in one or more separate partitions called 
missing data partitions. There is one missing data partition for unconditional missing data 
and more than one for conditional missing data. 

For  discrete-missing data all of the missing observations in a partition are thought of 
as residing in one category. Thus U is a column vector of n one's, where n is the number of 
missing observations in the partition. Equation (7) is applied to calculate z n (the optimally 
scaled missing data) which, due to the nature of U, is a vector whose elements are all the 
mean of L the model estimates of the missing data. 

For continuous-missing data the missing data are coded, in U, as though they are each 
in a separate category. Thus, the number of categories equals the number of missing 
observations, and U is an (n x n) identity matrix. Therefore, (7) simplifies to z u = L and 
each missing datum is optimally scaled by setting it equal to its model estimate. Note that 
this way of treating continuous-missing data is not in keeping with the discussion at the end 
of section 2.1. However, it is mathematically equivalent and simpler to use the present 
definition of U. 

Quantitative data. While the focus of this paper is on qualitative data, it is worthwhile 
to spend a moment on the estimation process for quantitative data. With the proper 
definition of U the gP transformation can be written, in matrix notation, as 

~P: z" = UcS. (10) 

Here U is a matrix with a row for each observation and with p + 1 columns, each column 
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being an integer power of the vector o of observations. The first column is the zero'th power 
(i.e., all ones), the second column is the first power (i.e., is o itself), the third column is the 
squares 02, etc. The unnormalized least squares estimates ofz u is 

lP: z ~ = U(U 'U) -  1U'~. (11) 

Note that in this case U is, once again, known before the analysis takes place. It is, then, 
only for the ordinal cases that U is unknown prior to the analysis. 

2.3 Conic Projection 

It is important to note that for all of the types of measurement characteristics discussed 
here, the corresponding transformation l may be viewed, for each partition, as though we 
are regressing the model estimates i onto the raw observation o in an unnormalized least 
squares sense and under the appropriate measurement restrictions. In particular, each t can 
be represented by a projection operator of the form 

E = U(U 'U) -  IU' (t2) 

where the particular definition of U depends on the measurement characteristics, as noted 
above. This means that we can make the important point that 

z ~ = E~. (13) 

When we formally note that the least squares notion is defined as 

~2 = tl z ~ - z II = (z ~ - z)'(z ~ - z) (14) 

and when we define F = I - E, then we see that 

~b 2 = ~'F~ (15) 

emphasizing the fact that each of the transformations can be viewed as optimizing the 
vector product of the model estimates and some linear combination of the very same model 
estimates, where the linear combination is determined by the measurement restrictions. 
This point has been emphasized in a more restricted situation by Young [1975a], and was 
first noted in the present context by Young, de Leeuw, & Takane [1976]. 

Geometrically, the projection operator E projects the model estimates ~, onto the 
nearest surface of a data cone o. The projection is the unnormalized optimally scaled 
data z u. 

Speaking geometrically, the model's estimates, the optimally scaled data, and the raw 
data can each be seen as subspaces of a space whose dimensionality is very high. We can 
also picture the model's parameters as existing in a parameter space. 

Figure 2 presents the geometric relations among the model, data and optimal scaling 
subspaces, as well as the parameter space. Note that the model, data and optimal scaling 
subspaces are subspaces of a single "problem" space of dimensionality n, with each observ- 
ation represented by a dimension of the space. We refer to this space as the "problem" space 
because it is in this space that we characterize and solve the data analysis problem under 
consideration. Note that the problem space is a space of real numbers, and that the space 
has a dimension for all observations in all partitions including missing data partitions (if 
there are any). 

We emphasize that the parameter space is not a subspace of the problem space. The 
parameter space is of dimensionality p, one dimension for each of the p parameters. Usually 
p is much less than n, the reduction in dimensionality representing the parsimony of the 
model's description of the data. We also emphasize that the model, scaling and data 
subspaces have fewer than n dimensions, but are subspaces of the problem space. Fur- 
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FIGURE 2 
Geometrical foundations of the ALSOS algorithms with emphasis on conic projection 

thermore, each partition is represented by its own unique model, scaling, and data sub- 
space, so when there are m partitions the problem space contains m model subspaces, rn 
optimal scaling subspaces, and m data subspaces. In Figure 2 we only display the geometry 
for one partition for simplicity and without loss of generality. 

In the problem space we have, geometrically, represented the model estimates and the 
optimally scaled data subspaces as vectors and the raw data subspace as a cone. Fur- 
thermore, the two vectors and cone all intersect at the origin of the problem space. We have 
chosen the type of representation for each of the three subspaces for specific reasons. We 
represent the optimal scaling subspace as a geometric vector running through the origin to 
emphasize the fact that the elements of the algebraic vector z" define a point in the problem 
space, and that, if we form the geometric vector which connects that point to the origin of 
the problem space, then all of the other points on the geometric vector are equivalent to z ~ 
at the ratio level of measurement. In terms of the restrictions discussed above, any point in 
the optimal scaling subspace in Figure 2 is equivalent to any other point. (The normal- 
ization restrictions will select a specific point z* on the optimal scaling vector, as discussed 
in section 2.4.) We represent the model subspace as a geometric vector for the same type of 
reasons. 

On the other hand, we represent the data subspace as a geometric cone, not a geo- 
metric vector. Although the representation is different, the reasoning underlying the 
representation is the same: For the data subspace a cone properly represents the measure- 
ment characteristics, whereas for the model and optimal scaling subspace a geometric 
vector is the proper representation. If you reflect on the restrictions given in (2) through (5), 
you will see they can all be represented geometrically as cones (some restrictions imply 
certain degenerate cones, for example vectors). This point has been discussed by de Leeuw, 
Young & Takane I1976] and by de Leeuw [1975; Note 3]. 
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You will note that the optimal scaling vector is represented as being on the surface of 
the cone. Since the optimal scaling and data subspaces are completely equivalent in terms 
of the measurement characteristics of the data, the optimal scaling vector must be con- 
tained in the data cone. Since the model and optimal scaling subspaces are as nearly alike as 
possible in a least squares sense, the optimal scaling vector must be "near" the model 
vector. Thus it is usually the case that the optimal scaling vector is on the surface of the 
cone, since the surface is the part of the cone which is generally closest to the model 
subspace. (The only time that the optimal scaling vector is inside the cone is when the 
model subspace also happens to be in the cone, which only happens when the model 
perfectly fits the data.) 

Finally, note the angle ~ between the model and optimal scaling vectors. The angle ct 
represents the goodness-of-fit between the two vectors, the fit being measured by (14). The 
smaller the angle the better the fit. When the angle is zero the fit is perfect (this usually 
means that the model and optimal scaling vectors are inside the data cone, but it may mean 
that the two are on the surface of the cone). Note that there is a difficulty associated with a 
model subspace consisting entirely of zeros. In this case, (14), the fit between the model and 
optimal scaling vectors, is perfect, and the angle ct in Figure 2 is zero. However, the fit is 
perfect only in a trivial and uninteresting sense. Thus we must ensure that whatever pro- 
cedures we adopt will not yield a solution at the origin of the problem space. Such solutions 
are avoided by normalizing the length of the model and optimal scaling vectors to some 
arbitrary nonzero length. 

2.4 Normalization 

As we just mentioned, a trivial and undesirable way of minimizing (14) is to set the 
model subspace ~ equal to zero. Then z u is also zero for all transformations, and hence~b z is 
zero for each partition. It is for this reason that the remarks about normalization conditions 
were made just prior to (6). In this section we discuss the normalization. 

Several different normalizations are used in the ALSOS programs. All of the normal- 
izations are introduced to avoid solutions represented by the origin of the problem space 
(see Figure 2) or other types of trivial solutions. The several normalization conditions have 
been discussed by Kruskal and Carroll [1969], Sands and Young [1980], Young [1972]; 
and de Leeuw [Note 3]. Two of these conditions are equivalent to defining either 

~ _ ( Z a *  - -  ~ ) ' ( Z . *  - -  ~) 
~'~ , (16)  

o r  

_, (17) 

where z* and z~' are the "normalized" versions ofz u which optimize tk 2 and ~b 2, respectively. 
Now it should be clear that z u minimizes (16) since we know from section 2.3 that it 

minimizes the numerator of (16), and since z u is not involved in the denominator of (16). 
Thus, 

z*  = z". (18)  

Also, by the measurement characteristics of z u, and as pictured in Figure 2, 

z~' = bz u = z* (19) 

where b is a "normalization value" which is to be determined. Notice that we are specifically 
using z* to refer to the normalization ofz  u which minimizes (17). 
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FIGURE 3 

Geometrical representation of the normalization aspect of ALSOS algorithms 

By looking at Figure 3 we may understand the relationships between ~b 2 and t# 2, and 
the relationships between z" and z*. This figure presents, in more detail, a portion of the 
problem space shown in Figure 2. Specifically, we are looking down at a portion of the 
surface of the data cone, with the surface represented by the irregularly shaped area. Above 
the cone's surface is shown the model vector i. Note that it emanates from the origin of the 
problem space and data cone, the origin denoted o.o. The orthogonal projection of the 
model vector onto the surface of the cone gives z", the unnormalized optimally scaled data. 
As we saw in section 2.3, this projection is represented by the operator E (12) which 
minimizes ~b 2 (14), the unnormalized index of fit. Geometrically, the projection minimizes the 
angle ~ between Z and z", and thus the length of the vector of residuals r u, and thus (14) 
which is simply the square of the length of the residuals vector. 

However, z a doesnot minimize q~, even though it minimizes (#2, as we shall now 
demonstrate. Recall that ~, the angle between i and z", has been minimized by orthogonally 
projecting i onto the cone's surface. It is simple to see that the projection defines a right 
triangle such that 

r "2 r ' r "  _ ~b~, (20) 
sin 2 0~ -- [2 -- ~,~ 

since the orthogonal projection of ~ onto the cone's surface requires a right angle at the 
surface of the cone (indicated by t't-~ lower 90 ° angle). However, if we project orthogonally 
from i (indicated by the upper 90 ° angle) onto the surface of the cone in the plane defined by 
i and z", we obtain a projection z* and a new right triangle such that 

r z r 'r  
sin 2 c( -- -- -- (#2, (21) 

Z . 2  Z * ' Z *  
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and, since 

we see that 

r = z* - ~,, (22) 

sin2 ~ = (z* - ~)'(z* -- ~) (23) 
Z*rZ* 

Thus the vector  z* minimizes q~ (17). Fur thermore ,  when z" is used in qS~ 2 and z* in ~bb 2, it is 
the case [from (20) and (23)] that  

q~ = 4~. (24) 

Thus, these two apparent ly  different formulas are in fact equal, and it makes no  difference 
which normal izat ion is chosen. 

We have not, however,  discovered how to obtain z* from z"; that  is, we still need to 
determine the value o fb  in (19). The value o fb  is obtained by noting that  

Z u '  Z u 
cos 2 ~ - (25) i'~ 

and that 

Thus 

and 

c°s2 ~ - z*'z* ' (26) 

~ ' , ~  Z u '  Z u 

Z*'Z* ~'~: ' 

z*'z* - (~'~)(i'~) 
(~ tu ,Tu~  
x -  - J 

Not ing  that  the values within parentheses are scalars, we see that  

z*'z* - (i'~)(z"'z")(~'~) 
1 7 u , T u ~ ( T u , T u ' t  
~ -  - i x -  - /  

Thus, it follows that 

Therefore,  in (19) we see that  

[ (~'~) 7[- (~'~) ] 
= k ( z ' z " )  z"'JlZ" (z"'z")/" 

z* = [z" ] (z'z")3 

b -  (f(i) 
(z"'z") " 

A little s tudy of  Figure 3 or  (25) will reveal that  

1 
b - -  

cos 2 0~ 

1 
- l _ q ~ 2  

(27) 

(28) 

(29) 

(3o) 

(31) 

(32) 
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Thus we also note that 

1 
~2 = qS~ = 1 - ~ .  (33) 

Finally, the orthogonality ofz  u and r ~ allows us to also show that 

b -  (9.'~) (34) 
( _ ~ , ~ u )  • 

These relationships among the various expressions for b were first noted by Sands and 
Young [1980]. The fact that optimizing the unnormalized loss function by a projection 
operator is simply related to the more difficult problem of optimizing a normalized loss 
function was first discussed by de Leeuw [1975] and de Leeuw, Young and Takane [1976] 
and proved by de Leeuw [Note 3]. 

Both Sands and Young [1980] and de Leeuw [Note 3] also discuss relations between 
two versions of Kruskal's [1965] second stress formula 

¢~ _ ( z *  - ~ ) ' ( z *  - ~) 
($ _ [ ) , ( $  _ [ )  , ( 3 5 )  

and 

( z *  - f~)'(z* - ~)  ( 3 6 )  
4 , ~  = ( z ~ '  - ~ * ~ ' ( z *  - ~ ' ) '  

where the bar over a symbol indicates a constant vector of means of the indicated vector. 
Reasoning like that presented above leads to the conclusion that 

z* = z u (37) 

and that 

. .F  (~ - ~)'(~ - ~) -1 
= (,.. - I L(# = i , ) j  + (38) 

2.5 Partitions 
The final point to be made in this section concerns what we term "measurement 

partitions." In some sets of data all of the observations are thought of as having arisen from 
a single measurement source. Furthermore, with some of these sets of data the measure- 
ment source generates data in such a way that all of the observations are reasonably 
assumed to have the same measurement characteristics. For  example, when a subject makes 
similarity judgments concerning pairs of stimuli, then all of the judgments can reasonably 
be thought of as having been generated by a single source (the subject) and as all having the 
same measurement characteristics (discrete ordering of the similarity judgments). However, 
for other types of data it is clearly the case that the data arise from several measurement 
sources, or on several scales. 

For  example, when we obtain multivariate survey data with variables such as sex, age, 
hair color, income, educational background and political preference from a set of people, 
we would probably think of each variable as a unique measurement source having its own 
separate measurement characteristics: Sex is binary; age is ratio; hair color is nominal; 
income may be interval, educational background may be ordinal; and preference is ordinal. 
In this case we would wish to partition the data space into a set of mutually exclusive and 
exhaustive subspaces (one for each variable). 
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While the notion of partitions most clearly relates to multivariate data, the notion is 
also useful for other types of data. For example, Coombs' [1964] notion of conditional 
similarities data (for which a subject rank orders the similarity of n - 1 "comparison" 
stimuli with respect to the n'th "standard" stimulus, and then does this n times, each time 
with a different stimulus as the "standard") is a situation in which a single measurement 
source (the subject) generates n different measurement scales (the rank orders). For this type 
of data measurement partitions are also of great use. 

When the data are partitioned, the OS phase of an ALSOS procedure is slightly more 
complicated than when they are not partitioned, but only slightly. The difference is that we 
must perform the OS and normalization for each partition separately, one partition at a 
time. Since the partitions are mutually exclusive, and since the OS is performed for each 
partition separately, the measurement characteristics of one partition need bear no special 
relationship to those of another partition. This means, for example, that many of the 
procedures oriented towards multivariate data (see Table 1) can analyze data with mixtures 
of measurement characteristics. These data, which we call mixed measurement level data, 
can have one set of measurement characteristics for one variable, and a completely different 
set for another variable. A multivariate procedure (MORALS) is discussed in Section 3.2. 

Note that for partitioned data the overall loss function is defined as the root-mean- 
square of the loss functions for each partition. Thus, if ~b 2 denotes the normalized loss 
function for the i'th ofp partitions, we define the overall loss as 

There is a very important consideration here, however, which must not be overlooked. 
It is usually imperative that right after performing the optimal scaling for a particular 
partition we immediately replace the old optimal scaling with the new optimal scaling. As 
will become clear from the next portion of this paper, the immediate replacement is impera- 
tive when the partitions are dependent. (Partitions are "dependent ,, if the optimal scale 
values for at least one partition, assuming the others are fixed, are a function of the optimal 
scale values for at least one other partition.) Since dependence is generally a characteristic 
of multivariate data, the programs which analyze such data involve immediate replacement. 
This point has been emphasized in Young, de Leeuw, & Takane [1976]. 

If, in fact, the partitions are dependent, then there is one additional consideration. Let's 
say, for the multivariate data case, that we have completed a cycle of optimal scaling and 
replacement for each variable. Now let's say that we repeat the optimal scaling of one of the 
variables. If we do this, then the second optimal scaling of the variable does not yield the 
same quantification as the first optimal scaling. Why is this? Because the variables are 
dependent. The quantification obtained by optimally scaling one variable depends on the 
quantification of each of the other variables. 

While this all sounds somewhat bothersome, it can be shown [de Leeuw, Young & 
Takane, 1976] that were we to perform "inner" iterations ("inner" with respect to the 
scheme in Figure 1) of the cycle of optimal scaling and replacement, then this process would 
converge to a point where the quantifications would no longer change upon repeated 
optimal scaling. In our work we do not perform such inner optimal scaling iterations, 
however, only performing the process once for each variable (or partition) before switching 
to the model estimation phase (see Figure 1). Our experience has been that such inner 
iteration only serves to decrease the overall efficiency of the procedure, and de Leeuw 
[Note 3] has proven that the number of inner interations has no effect on the eventual 
convergence point. 
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3. ALSOS A19orithms 

In this section we discuss two ALSOS algorithms in detail, the ADDALS and 
MORALS algorithms. In conjunction with the ADDALS discussion we present the 
discrete-nominal, discrete-ordinal and continuous-ordinal transformation processes (in 
terms of indicator matrices) in detail. 

3.1 ADDALS Algorithm 
In this section we discuss the overall ADDALS algorithm [de Leeuw, Young & 

Takane, 1976] for additivity (conjoint) analysis. The steps of the algorithm are presented in 
Figure 4. We discuss the ADDALS algorithm first because it is the simplest. 

The ADDALS algorithm describes tabular data by using the simple additive model. 
This is the "main effects" analysis of variance model, the analysis of variance model which 
has no interaction term: 

z* ~- ~ + ~j + #. (40) 

Note that we have reorganized the vector z* with element z* into a two-way table Z* with 
element z*. 

The initialization of ADDALS is very simple (see step START of Figure 4). We simply 
call the raw data the initial "optimally scaled" data (Z* = O). These initial "scaled" data 
serve as the input to the model estimation step that is next. 

The model estimation phase of ADDALS (step MODEL in Figure 4) begins by esti- 
mating the parameters ~ , / ~  and # of (40). The estimation method is well known: We use 
the grand mean of Z* to estimate #, and the mean of the i'th row's (o r / t h  column's) 
deviation from # to estimate ~ (or to estimate/~). This is the same as with regular analysis 
of variance, except we use the optimally scaled data Z* in place of the raw data O. 

ADDALS ALGORITHM 

START: READ 0 AND ITS MEASUREMENT INITIALIZATION 
CHARACTERISTICS, NORMALIZE 
0 AND SET Z*  = O, 

MODEL: CALCULATE ~I" Bj~ AND P AS THE MODEL PARAMETERS 
RO~COLUMN AND GRAND MEANS OF Z*, 

FIT: 

SCALE: 

7"IJ = °LI + 8j + ~ MODEL ESTIMATES 

o - -  112 FIT 

IF ¢ IS SMALL,, OR IF THE CHANGES TERMINATION 
IN 0j Oil., Bj AND P ARE SMALL., GO 
TO QUIT, OTHERWISE GO TO SCALE. 

Z U = U(U'U)-Iu'~ SCALING 

[J_~L_] NORMALIZATION z* --- z u lIZUil 

Go TO MODEL 

QUIT: OUTPUT RESULTS AND STOP, 
FIGURE 4 

The major steps in the ADDALS algorithm 
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Following the parameter estimation step we calculate the model estimates 2 u by 
applying the model in (40). These 2 are the values which minimize 4) for the particular Z* 
we have on the current iteration. 

The goodness of fit @ is calculated in step FIT. If 4) is small (good fit) or if (~, ~(, fl~ and 
# all haven't changed much from the previous iteration (convergence), we quit. Otherwise 
we proceed to rescale the data. 

The model estimates ~. from step MODEL serve as input to the optimal scaling (step 
SCALE). (Note that we h-"ave just reshaped the p by q matrix 2 into a vector~ which has p 
times q elements. This simplifies the notation.) The projection operator U(U'U)-~U' is 
applied to the estimates ~ to obtain the unnormalized scaled data z", which in turn are 
normalized to obtain the optimally scaled data z*. These z* are the values which minimize 

for the particular ~ we have on the current iteration. The indicator matrix U, of course, is 
defined by whatever process corresponds to the measurement characteristics of the data O, 
as discussed in section 2.2. We now reshape z* into Z* and return to step MODEL to 
obtain new model estimates based on the newly scaled data Z*. 

In the remainder of this section we present three detailed and completely worked out 
artificial examples of the ADDALS algorithm. The three examples all involve analyzing the 
same 3 x 3 table of data, but under three different sets of measurement assumptions: 
discrete-nominal, discrete-ordinal, and continuous-ordinal. The table of data is (arib- 
trarily): 

A C B 
A B B 
C A B 

These data could have been obtained, for example, in a 3 x 3 experiment in which the two 
experimental variables are wind-speed (none, slow, fast) and temperature ( -  10°C, 0°C, and 
10°C), and in which we ask people to judge the relative perceived temperatures as being 
cold, (C); colder, (B); and coldest, (A). 

Discrete-nominal. In Figure 5 we present the first two iterations of ADDALS when the 
data are presumed to be discrete-nominal. The first iteration is shown on the left panel, the 

FIRST ITERATION SECOND ITERATIO~ 
• MODEL ESTIMATIO~ 

• ~DEL ESTIMATION STRESS 
DATA I~IDDEL PARAMETERS MODEL ESTIMATES t]"l iZ'-ZI F DATA MODEL PARAMETERS MODEL ESTIMATES STRESS Z* a 8 U ZIJ = al+OJ+U 

z" . , . ~,~oo::, ~l,,z'-z,~ r,.o~,.NT,.,] V-.o,7] [-.~ig] N.s2 r,.~ ,.,2 ,.R,] ,,,z',, 

I{zL~s L4.,z ,.07 ,.,aj L-.o,zj L .367j LM.15 N.,2 N.~J ' h8,.ol 
D ~] ~ j )  : L~]: F,23L 3'So N,23M.gO ~,5615.23j .3~1= 1 n o  I OPTIMAL SCALING 

RAW DATA O' ~ F A A A D D B B C C I OPTIMAL SCALING 

! i 1 O 0 0 D O D] INDICATOR MATRIX U' " 0 0 0 I 1 i 1 O 
INDICATOR MATRIX U' " O O I i 1 I O O 0 0 D O 0 0 i 

;J O O 0 0 0 0 l 
MODEL ESTIMATES [,4.15 q.29 4.N2 4.8N q.S7 LI.98 LI.D4 (I,N2 LI.15] 2' r MOOEL EOT~MA'reS = L).go 3,2~ 430 5.23 4.23 M.56 5.23 4.90 S.9u] 

g... . . . . . . .  ~o. Z u'= [4.01 4.D1 4.01 ,.81 4.81 4.81 4.81 ~)iO (t.40] U . . . . .  L.ZED Z u'= [4.29 4.29 4.29 4.D1 4.81 4.81 4.81 4.29 4.293 
SCALEI} DATA SEALED DATA 

• NORMALIZATION 
• ~4DREAllZATIOt{ 

t ,  

= = ~ = l O l S  ANI} Z*=I4.O7 ~,88 ~.8~1 s i iZUll 184.30 
179.50 ' [4,Lt7 tLO7 4.8BJ • FIT 

o FIT 
IIZ~I ~ t184,91~" ,0295 

LLZ/2LL ~ ~ 2~E~. ~ ~ = '1209 I ~ I Z l l  = 1182.27 '12og 

F I G U R E  5 

Discrete-Nominal ADDALS example 

~,29 ~,29 4,8I] 

L~.;9 4.29 ~.81j 

~ = I F ' ~  = .0295 
|18q.q6 
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second on the right. Each panel is divided into four sections called Model Estimation, 
Optimal Scaling, Normalization, and Fit. Note that the data on the first iteration (Z*, the 
left-most matrix in the Model Estimation section of the left panel) use different symbols to 
code the categories than the A, B, and C given above. We must use numbers, not letters, 
because the initialization requires them. Thus, we have chosen to set A = 2, B = 5, and 
C = 7. This initial Z*, then, is arbitrary, and any other initial assignment of numbers to the 
categories A, B, and C would suffice. The initial assignment may cause the algorithm to 
obtain a local minimum as a solution, instead of the global minimum [Young & Null, 
1978]. Thus, we should be careful at this point. In fact, it is desirable to try several different 
assignments and to observe their effect on the results, particularly when the categories are 
truely unordered. For the example given (perceived temperature), the categories are poten- 
tially ordered, and we have chosen numbers which are in that potentially "correct" order. 
However, the analysis is nominal, thus the initial order need not be preserved. 

To the right of Z* are the values of the model parameters ~,/~j,  and/~. The mean of Z* 
is #, and the deviation of the row and column means from # are the ~ and/~i, respectively. 
To the right of the parameters is the matrix of estimates 2 and the measure of fit (called 
stress since this is Kruskal's Stress index). The parameters yield estimates 2 which are a 
least stress fit to Z*, conditional on the arbitrary initial coding of the three observation 
categories. Note that what has been done to this point is a classical ANOVA of the Z* 
using the main effects model. 

ADDALS now proceeds to the optimal scaling on the first iteration. Figure 5 presents 
the raw data vector o, with the observations coded as A, B and C, and with all observations 
in a given category being adjacent to each other. (The order of the observations in this 
vector is irrelevant. The order shown simplifies the presentation.) Directly below o is U, the 
indicator matrix (note that the transpose of U is shown). U has three columns, one for each 
category, and nine rows, one for each observation. Finally, note that the vector of nine 
model estimates, ~, appears directly below U. The order of the elements of f~ is not arbitrary, 
but is in the order dictated by the order of the elements in the vector o. The first element in 
the vector i (3.90) corresponds to the first observation in the vector o (an A) because the 
value 3.90 c----~mes from a cell in the matrix 2 which corresponds to an A observation in the 
0 matrix. The correspondence between the elements of the vectors i and o is the same 
throughout:  Each value in the vector ~ is the model's least squares estimate of the current 
numerical coding (quantification) of the category given in the vector o above. 

The input to the optimal scaling step is the indicator matrix U and the model estimates 
i. The output is the unnormalized scaled data z". You will recall that z u = U(U'U)-1U'i ,  
according to (7). We note that the diagonal of U'U is [3, 4, 2], which is the number of 
observations in each category. Of course DIAG[(U'U)-1]  = [1/3, 1/4, 1/2]. Furthermore, 
the projection operator E = U(U'U)-1U' is a block diagonal matrix with three blocks, one 
for each category. The order of a block equals the number of observations in the corre- 
sponding category, and all elements in a block equal the reciprocal of the category fre- 
quency. Finally, the transpose of(U'U)-  1U'f~ is [4.01, 4.81, 4.40]. These three values are the 
unnormalized scale values for the three observation categories, also called the unnorma- 
lized observation category parameter values. Note that these three values are not in the 
anticipated order: Category B, which had the middle initial value (5), now has the largest 
value. 

ADDALS now proceeds to the normalization step in Figure 5. As discussed in section 
2.4 and illustrated in Figure 3, the vector z u which was just computed minimizes the 
unnormalized fit to (llZ u - ZI), but not the normalized Stress index(IZ* - 2It/IIZ*tI) 1/2 at 
the top of Figure 5. As we showed in section 2.4, to minimize the normalized Stress index we 
must compute the normalization constant b given by (31). For  the first iteration b = 1.015, 
as is shown on the bottom left portion of Figure 5. This yields the matrix of (normalized) 
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optimally scaled data Z* (given next in the Figure) and a (normalized) Stress value of.1209. 
We see that the optimal scaling has improved the fit from .3681 to .1209, a big improve- 
ment. 

Note that we can also calculate the Stress using the unnormalized Z u if we make sure 
to use the model estimates in the denominator [(16), above]. The value for this formula, 
which is shown at the bottom of the left panel of Figure 5, must also be.1209. The question 
might be asked, then, why normalize if we can use the unnormalized Z u to calculate Stress 
just by using a slightly different Stress formula? The answer is that while it is true that we 
can use Z" to calculate Stress, we must have Z* in order to start the next iteration properly. 

The second iteration is shown in the right panel of Figure 5. We are only going to 
comment on the values of Stress on this iteration. We see that Stress is .0460 after the 
second model estimation, and goes down further to .0295 after the second optimal scaling. 
These values of fit will always improve (decrease) until ADDALS converges on a point of 
no further change. This is the convergent nature of all ALSOS algorithms: The fit never 
worsens and eventually stabilizes. Note that if we had used different initial values for the 
observation categories the algorithm would still remain convergent, but would perhaps 
have converged on a different Stress value. If so, the larger Stress value would be a local 
minimum [Young & Null, 1978]. 

ADDALS would take a few more iterations to reach a point where Stress ceases to 
improve by very much, and would then stop. We do not report the rest of these iterations. 
Note that we stop after the model estimation because at that point the data are scaled in a 
fashion which yields the parameters and Stress just calculated. 

Discrete-ordinal. We now discuss the discrete-ordinal analysis of these same data. The 
first two iterations are shown in Figure 6. The discrete-ordinal ADDALS algorithm is 
exactly the same as the discrete-nominal ADDALS algorithm, with but a single exception: 
An order constraint is imposed on the observation categories during the optimal scaling. 
The constraint is introduced via the U matrix. 

One implication of this relationship between the discrete-nominal and discrete-ordinal 
algorithms is that the model estimation step on iteration one is precisely the same (compare 
Figures 5 and 6). In fact, the optimal scaling step starts out in the same way for both levels 
of measurement. Specifically, for the discrete-ordinal case the indicator matrix U starts out 
to be the same as the indicator matrix used for the discrete-nominal case: It simply indi- 
cates the category structure. Thus, the FIRST TRY (left panel of Figure 6) computes the 
same Z u as is computed for the discrete-nominal case (left panel of Figure 5). However, 
when the Z" values are inspected we see that they are not in the required order: The middle 
raw observation category (5) has been assigned the largest Z ~ (4.81), and the largest cat- 
egory (7) a smaller Z" (4.40). 

To cope with this order violation we modify U and have a SECOND TRY. The new U 
still has nine rows, one for each observation, but it has only two columns, one for the 
smallest observation category and one for the two order violating categories. Thus, we have 
merged the two violating categories into one "block." We now repeat the calculation o fZ  u 
using this new U and check to see if its values are properly ordered. They are, so we proceed 
to the normalization step. Of course, if the Z u entries were still disordered we would have 
tried again with the order violating columns of U merged. 

Note that we have just looked in detail at the critical difference between the nominal 
and ordinal levels. For nominal, U is known before analysis, remains constant, and simply 
indicates the observation category structure. For  ordinal (discrete or continuous), U is not 

known but must be determined. It is not constant, but is variable. And for discrete-ordinal 
U does not indicate category structure, but does indicate blocks of categories which must be 
merged to maintain order. 

We will not discuss the remainder of Figure 6 in detail; rather, we let you peruse it at 
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FIRST ITERATION 
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F I G U R E  6 

Discrete-Ordinal ADDALS example 

STRESS 

11ZLTZ.LL 
| I r Z I I  

I 

-1184,72 1185.07 

your leisure. Note that the normalization procedures are the same as with any other 
measurement characteristics, although the numbers are different than in Figure 5 because 
of the ordinal constraint in the optimal scaling. Note also that the Stress values are all 
larger than with the discrete-nominal assumptions, because we have had to impose the 
order constraints. 

Continuous-ordinal. The algorithm for continuous-ordinal is precisely the same as the 
previous two measurement cases except for two differences, both in the optimal scaling step. 

The first difference is that a permutation matrix P is used. The order of P equals the 
number of observations. Furthermore, P is block diagonal, with the number of blocks 
equaling the number of categories, and the order of each block equaling the number of 
observations in each category. The permutation matrix permutes (sorts) the model esti- 
mates 2 into order within each observation category. 

For the example we've been discussing (Figure 7) the permutation matrix on the first 
iteration is 

0 1 0 
1 0 0 
0 0 1 

0 1 0 0 
0 0 1 0 
t 0 0 0 
0 0 0 1 

0 1 
1 0 

This matrix, when applied to the model estimates, yields the permuted 2 shown in Figure 7. 
Note that P is a variable, varying between iterations, just as does U. 

The second difference between continuous-ordinal and the previous two measurement 
cases is that U starts out being the identity matrix whose order equals the number of 
observations (not the number of categories). Note that U does not start out reflecting the 
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FIGURE 7 
Continuous-Ordinal ADDALS example 
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category structure. Because of this U does not end up reflecting the category structure, nor 
the structure of categories which must be blocked to preserve order. Rather, U ends up 
indicating which observations (not categories) must be blocked to preserve order. We are 
not going to review Figure 7 in detail. 

3.2 The M O R A L S  Al#orithm 

In this section we briefly review the overall MORALS algorithm [Young, de Leeuw, & 
Takane, 1976] for multiple regression with multivariate data whose variables each have 
their own independent measurement characteristics. We discuss only the algorithm. We 
present no detailed examples like those in the previous section, as we deem them 
unnecessary. 

The important aspect of MORALS is that it permits the multivariate data to have any 
mix of measurement types: Some variables can be nominal, others ordinal, and yet others 
interval. Similarly, any variable can be discrete or continuous. This flexibility applies to the 
dependent variable as well as the independent variables. In fact, the algorithm has been 
extended to the case where there are multiple dependent variables with mixed measurement 
characteristics [CORALS and CANALS by Young, de Leeuw & Takane, 1976] and to the 
case where there are multiple sets of variables instead of two sets, each set having mixed 
measurement variables [OVERALS, by Girl, 1981]. Closely related is the PATHALS algo- 
rithm for path analysis whh mixed measurement level data [Girl, 1981], and the CRIMI- 
NALS algorithm for discriminant analysis with mixed measurement level predictors 
[Girl, 1981]. 

The reason that we choose to discuss the MORALS algorithm is because it is the 
simplest algorithm which involves the concept of measurement partitions, a concept not 
illustrated by the ADDALS algorithm. The partitions notion, discussed in section 2.5, is 
very appropriate to multivariate data, since it is usually the case that the observations on 
one variable are not directly comparable to those on another variable. 
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MORALS ALGORITHM 
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The major steps in the MORALS algorithm 

The structure of the MORALS algorithm is presented in Figure 8. In this figure y is a 
vector of K raw observations on one dependent variable, and X is a matrix of K raw 
observations on M independent variables. Each of the M + t variables has its own 
measurement characteristics and has its own partition. Thus, there are M + 1 partitions, 
M + 1 indicator matrices, and M + 1 optimal scaling steps. 

The START step is similar to that used in the ADDALS algorithm: The initial "opti- 
mally scaled" data are simply the raw data. The M O D E L  step is simply a multiple re- 
gression analysis of the optimally scaled variables y* and X*. The FIT step is similar to the 
ADDALS FIT step. 

The new aspect is the SCALE step. Notice that it is divided into two major sections, 
the first for the single dependent variable (at step SCALE), and the second for the M 
independent variables (at step LOOP). For  each variable we calculate the model's estimate 
of that variable (~ or i j), then use the estimate with the appropriate indicator matrix(Uy or 
U j) to calculate the unnormalized optimally scaled data (y" or xT), and then perform the 
normalization to obtain y* or x*.  Notice that the newly computed y* or x* replace their 
previous values. The model estimate equation for the dependent variable is straightforward, 
and the one for the independent variable has been explained by Young, de Leeuw and 
Takane [1976]. The scaling and normalization steps are the same as with the other algo- 
rithms. 

The difference, then, is that we have several partitions and that we do the model 
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estimation, scaling, and normalization for each one. It is important to point out that the 
partitions are not independent, that is, the values being calculated for one partition are 
dependent on the values calculated for all other partitions. To assure convergence and to 
maintain the ALS aspect of an algorithm with nonindependent partitions we must immedi- 
ately replace the previous sealed data with the newly computed (normalized) scaled data. 

The nonindependence of the partitions also brings up another important point. If, after 
the LOOPEND in Figure 8 we return to step SCALE instead of step MODEL, and if we 
repeated the scaling of each variable, we would obtain a new and different scaling which 
would fit better than before. Thus, to make the scaling of all variables least squares (in an 
overall sense) we would have to perform "inner" iterations on the scaling of the variables 
until convergence is reached on their scaling. However, we have found this to be inefficient, 
and instead return to the MODEL step to obtain improved values for the model 
parameters. 

3.3 The A L S C A L  Algorithm 

Most of the procedures that have been developed on the ALSOS principle are simple 
in the model estimation phase. For example, the PRINCIPALS and PRINCIP procedures 
apply the principal components model to mixed measurement level multivariate data 
[Young, Takane, & de Leeuw, 1978; de Leeuw & van Rijkevorsel, Note 4]. For these 
algorithms the model estimation phase is nothing more than a standard eigenvalue de- 
composition of the optimally scaled data. 

The only procedure which involves a fairly complicated model estimation phase is the 
ALSCALalgorithm [Young, Takane, & Lewyckyj, 1978, 1980; Young & Lewyckyj, 1979, 
1980], for performing individual differences multidimensional scaling [Takane, Young, & 
de Leeuw, 1977]. However, the complexity of the model estimation phase lies in the very 
nature of the model: There are several sets of parameters which are not mutually indepen- 
dent (as, for example, are the several sets of parameters of the additive model), and which 
are not all linearly related to the loss function (as is also the case in the additive model). 
These characteristics of the model can be seen from the equation defining the model: 

t 

2~i, = ~ via Wka(X~a -- yja) 2 (41) 
a = l  

where 2i~k is a tabular reorganization of the model estimates 2, with subscripts i and j 
referring to objects or events about which we have some sort of similarity information, and 
subscript k referring to situations (subjects, experimental conditions, etc.) under which the 
similarity information is observed. The parameters v~a are "stimulus weights" of the asym- 
metric Euclidean model [Young, 1975b], Wka are subject weights of the individual differ- 
ences model discussed by Carroll and Chang [19703 and Horan [1969], xi~ are stimulus- 
object points in a Euclidean space, and Yja are ideal points for Coombs' unfolding model 
[1964] or attribute points for preference data. 

When we say that the several sets of parameters are not mutually independent we 
mean that estimating the values of at least one set of parameters involves estimates already 
obtained for at least one of the other sets of parameters. When parameters are not indepen- 
dent, the values of the parameters in one set affect the values estimated for the parameters in 
the other set. This way of looking at the difficulty immediately suggests a solution to the 
problem, however. All we have to do is to define an ALS "inner" interation which estimates 
parameters, one set at a time. Thus, for ALSCAL, which is based on the model in (41), the 
inner iteration has four phases each using the values of the parameters in three of the sets 
(and the optimally scaled data) to obtain conditional least squares estimates for the par- 
ameters in the fourth set. Once the parameters in a set are estimated, they are immediately 



386 PSYCHOMETRIKA 

used to replace their old values, and the procedure moves on to another one of the four 
model parameter sets. This four phase ALS procedure could be iterated until convergence is 
obtained (there would be inner iterations). 

Actually, ALSCAL does not use the inner iteration procedure outlined in the previous 
paragraph. It would be very slow to require the inner iterations of the model estimation 
phase to converge before going on to the optimal scaling phase. Experience shows that we 
should only cycle through the four phases of the inner iteration once, defining that to be a 
complete model estimation phase. Note that the considerations about nonindependent data 
partitions apply in precisely the same fashion to nonindependent model parameter sets. 

The second source of complexity in the ALSCAL algorithm is the nonlinear re- 
lationship between the stimulus-object points xia and Yja and the model estimates ~ij~. We 
do not go into this problem here except to say that the solution we use is to apply the ALS 
principle yet a third time (defining what might be called "innermost" iterations) to estimate 
the conditional least squares value for a single point's coordinates, one coordinate at a time, 
under the assumption that all of the other coordinates are constant. This innermost iter- 
ation involves n*t phases, one for each of the n points on each of the t dimensions. 

The ALSCAL algorithm involves a concept which does not arise in the other algo- 
rithms: The parameters of the model are not mutually independent. The algorithm, then, 
serves to illustrate one method for coping with parameter dependence, namely the use of 
inner iterations to reapply the ALS principle. The algorithm also serves to illustrate that we 
do not have to iterate the inner iterations until convergence is reached (one "iteration" can 
suffice). 

As mentioned above, the notion of inner iteration is involved in the ALSOS system in 
one other critical place: the method for optimally scaling data which are partitioned into 
dependent partitions. When we view the observation categories as parameters and the 
optimal scale values assigned to each category as parameter values, then we see that we 
need knowledge of some parameter values in estimating other parameter values. This is 
precisely the definition of dependence given above, except that the problem occurs in the 
optimal scaling phase of the algorithm instead of in the model estimation phase. Note that 
data partitions are not always dependent [for example, the data partitions discussed by 
de Leeuw, Young, & Takane, 1976, for ADDALS, and by Takane, Young, & de Leeuw, 
1977, for ALSCAL are independent] just as parameters are not always dependent. How- 
ever, when dependence exists the ALS inner iteration approach is a viable approach to deal 
with the problem. 

4. Conclusions 

The combination of alternating least squares and optimal scaling, which forms the 
foundation of the ALSOS approach to algorithm construction, has two primary advan- 
tages: (a) If a least squares procedure is known for analyzing numerical data, then it can be 
used to analyze qualitative data simply by alternating the procedure with the optimal 
scaling procedure appropriate to the qualitative data; and (b) under certain fairly general 
circumstances the resulting ALSOS algorithm is convergent and has no difficulties associ- 
ated with estimating step size. It is the opinion of the author that the second advantage 
implies that ALSOS algorithms have fewer local minimum problems than gradient pro- 
cedures which require step-size estimation. 

We do not mean to imply that an ALSOS algorithm is the be-all and end-all of 
algorithms. It is not. It is simply a relatively straightforward approach to algorithm con- 
struction which has certain nice convergence properties. The resulting algorithm may not 
be very simple. With ALSCAL, for example, even though each step is not very complicated, 
the overall structure is rather complex due to the necessity of inner and innermost iter- 

adamenders
Highlight



F. W. YOUNG 387 

ations. Furthermore, in some circumstances there are some indeterminacies of construction 
which may have great effect on the overall speed of the algorithm (such as the number of 
inner iterations performed on each outer iteration). Finally, perhaps the biggest drawback 
is that the ALSOS approach does not guarantee convergence on the global optimum, but 
on a potentially local optimum. Since the convergence point is conditional on the in- 
itialization point, it is sometimes the case that the initialization procedure can become very 
complicated, and may be very crucial. We conclude, however, that the ALSOS approach to 
algorithm construction provides flexible and well-behaved methods for quantitative analy- 
sis of qualitative data. 
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