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Weighted MDS

• Sometimes referred to as the “weighted Euclidean” or
“INDSCAL” (individual differences scaling) model

• Variant of standard, “two-way” MDS where more than one
data set of object-pair dissimilarities is analyzed
simultaneously

• WMDS takes “three-way” data, where the third “way” of the
dataset is different subjects/measurements/etc.

• Objective: find lowest dimensional space that dissimilarities
from several sources can be located in

• Output: “group configuration” and dimension weights that
describe relative importance of dimensions for various
subjects/measurements/etc.

I Can “stretch” and “shrink” configuration by applying
dimension weights to coordinates
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Weighted MDS

• The general WMDS model being fit is as follows:

d2
ijk = (xi − xj)Wk(xi − xj)

′

• d2
ijk represents the squared distance between between object i

and j , as modified by weight w for subject k

• xi and xj are stimulus coordinates for objects i and j

• In classical MDS, the weight matrix would simply be an
identity matrix with 1’s on the diagonal and 0’s on the
off-diagonal since there are no weights

• k refers to the “third way” of the data

• The weight matrix, Wk, is a square, symmetric, (and, in this
case) diagonal matrix of weights for each respondent type
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Weighted MDS

• Applications:

I Compare one group to another (e.g., differences in
psychological structure)

I Compare treatment groups to control (e.g., does frame/prime
matter?)

I Look for change at different time points

• Group configuration should make sense and fit should be
“good” according to normal criteria (e.g., Stress, SPP,
permutation test)

• Researchers are usually interested in the dimension weights

I Can do statistical tests if differences in weight across
groups/subjects

I Can use weights as variables in the subsequent analyses
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Weighted MDS

See “Weighted MDS Examples.r” script for example
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WMDS Weights: Plotting
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B. Elite (Actors)
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C. Mass (Groups)
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D. Elite (Groups)
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WMDS Weights: Testing Differences

Sum of Mean
Squares df Square F P-value

Political Actor
Between 0.028 1 0.028 0.084 0.778
Within 3.370 10 0.337
Total 3.398 11

Political Group
Between 0.497 1 0.497 1.667 0.221
Within 3.575 12 0.298
Total 4.072 13

• Can do an ANAVA – analysis of angular separation – to test
differences in angular separation across groups

• In this case, differences are not statistically significant
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Refresher on Unfolding

• Scaling model that assumes “single-peaked” item response
functions, rather than monotonic ones, like with the
cumulative scaling model

• Represents proximities between the n rows and k columns of
a rectangular data matrix as distances between points along
a single continuum

• Objectives:

I Represent row and column objects in some low-dimensional
space (two dimensions, ideally!)

I Proximity between row and each column object should
represent, to the best extent possible, the
preferences/(dis)similarities from the original data matrix
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Refresher on Unfolding

Imagine a napkin!
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Multidimensional Unfolding

• Very similar to classical multidimensional scaling

• Major difference is that we need distances between row and
column objects that are not the same

• Can also be estimated using the SMACOF algorithm in the
“smacof” package in R using the “smacofRect” function

• Minimizes a loss function just like classical MDS

n∑
i=1

q∑
j=1

(dij − δij)2

• This looks just like Stress, except our error (differences
between distances and dissimilarities) is summed over all pairs
of n and q, since rows and columns are different
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Example: Jacoby 2014, cont’d

∆ matrix for a multidimensional unfolding analysis:

Software computes this for you – can just submit a rectangular
matrix of proximity data
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Other Options for Estimation

1. Optimal Classification, developed by Poole (2000, 2005)

I R package called “oc”
I Can estimate unidimensional model, nonparametric
I Only dichotomous data, programmed in language of

legislators/votes

2. Ordinal Optimal Classification, Hare et al. (2018)

I Nonparametric, ordinal data, can estimate unidimensional
model

3. Smacof, developed by De Leeuw and colleagues (lots of
papers)

I R package of same name, ordinal and interval input data
I Won’t fit unidimensional models, no dichotomous data
I In a pinch, could fit 2-dimensional model to unidimensional

data and just use first dimension coordinates
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Multidimensional Unfolding

See “Nonmetric Multidimensional Unfolding.r” script for
example
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Moving to the Vector Model of Unfolding...

• Think back to the summated rating model
• In that case, we collapsed across the columns of an n by k

data matrix to create a unidimensional measure of some
latent construct

• In doing this, we made several assumptions, one of which is
that the items are “parallel measures” – they measure the
same thing in roughly the same way

• What happens with a similar dataset, but the full profile of
the rows across columns matters?

• Example: ranking a set of stimuli according to importance or
attractiveness

I In this case, we want to preserve the data within rows/across
columns

I Rankings where each cell value is a rank number are not
parallel measures

I Summing across the columns would result in scale scores
identical for all rows
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The Vector Model of Unfolding

• So far, we’ve represented rows objects as points in variable
space (everything up to SVD)

• Also represented variables as both points (MDS, cumulative
scaling, unfolding) and vectors (factor analysis, biplot)

• The Vector Model represents row objects as vectors emanative
from the centroid, and column stimuli as points

I Sometimes referred to as MDPREF, for MultiDimensional
PREFerence Scaling

• Such a representation of the data allows for geometric
interpretations of the relationships between pairs of row
objects and between row objects and column objects

• The column points and row vectors are arranged so that to
the greatest extent possible, row vectors point toward higher
ranked column points, and away from lower ranked column
objects
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Example

Hypothetical dataset with two individuals (row objects) and three
generic stimuli (column objects)

Respondents asked to rank order the stimuli, where larger
numerical values correspond to more preferred stimuli
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Example, cont’d

Objective is to locate column objects as points and row objects as
vectors in a shared space

Drawing a perpendicular line from the column points to the row
vectors should reproduce, as perfectly as possible, the original rank
ordering in the dataset
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Example, cont’d

Expanded to more column and row objects:

Each vector reproduces the preferences/rank orders from the
original data matrix
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The Model

• Assume some matrix X contains n observations’ scores for k
stimuli

• Let the stimulus set, S1,S2, ...,Sk , be represented by k points
in m-dimensional space

• Point coordinates are collected into the k ×m matrix, Φ

• The observations, O1,O2, ...,On, are represented by n
unit-length vectors in the same m-space

• All of these vectors emanate from the origin, and their
terminal points are collected into the n ×m matrix, Γ
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The Model, cont’d

• Algebraically, the vector γi contains the terminal points of
observation i ’s vector within the m-space

• The projections from the stimulus points onto i ’s vector are
obtained by taking the scalar products of the stimulus points
and the observation vector:

x̂i = Φγi

• We assume the dimensionality, m, should be relatively small
relative to the dimensionality of the original data matrix

• If that’s true, then we need to introduce an error term:

xi = f (x̂i ) + εi = f (Φγi ) + εi

• εi is an error vector
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The Model, cont’d

• If the data are assumed to be interval level:

xi = α + βx̂i + εi

• If the data are ordinal level:

xi = f (x̂i ) + εi

• Here, f is a monotonic function

21/34



Estimation: Metric Model (Interval/Ratio Data)

• First, we’re going to consider how to estimate a metric model,
which assumes interval or ratio level data

• Estimation is very easy: basically just a singular value
decomposition

• Steps:

1. Standardize rows of X to 0 mean and unit variance, Xstd

2. Perform SVD of Xstd = UDV′

U in an n by q matrix of left singular vectors
D is the q-order diagonal matrix of singular values
V is the k by q matrix of right singular vectors

3. Determine appropriate dimensionality, m, by considering model
fit in a number of dimensions

R2 = tr(D2
m)/tr(D

2), where tr is the matrix trace, or sum of
diagonal elements

4. After determining m, Φ = Vm, and Γ = UmDm
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Estimation: Metric Model (Interval/Ratio Data)

See “Vector Model.r” script for example
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Estimation: Nonmetric Model (Ordinal Data)

• To do a estimate a nonmetric vector model, we just need to
iteratively optimally scale the row and column coordinates to
be monotonic functions of the original dataset

• Just like we did the first week with ALSOS

• Steps:

1. Specify m, the dimensionality of the space, initialize R2 to
zero, and initialize X* by setting it equal to the original X
matrix. Standardize within rows of X* to obtain X*

std

2. Perform SVD on X*
std to obtain Um, Dm, and Vm. Use these

matrices to calculate current estimates of X̂ and R2

3. If the current R2 is larger than the previous value, then
continue. If R2 has not changed from the previous iteration,
go to step 6
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Estimation: Nonmetric Model (Ordinal Data)

• Steps, cont’d:

4. For i = 1, 2, ..., n, use Kruskal’s monotonic regression (1964)
to find a new estimate of x̂*i that are maximally correlated with
the current model-based predicted values but always weakly
monotonic to the original data

5. Return to step 2 and carry out another iteration of the
estimation procedure on the new version of X* that was
obtained in step 4

6. When R2 converges, construct the Φ and Γ matrices from the
singular vectors and values, and use the final R2 as the
goodness-of-fit

• Row and column coordinates are calculated exactly as they
were before, except the model will likely fit better due to the
weaker assumption of (weak) monotonicity
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Estimation: Nonmetric Model (Ordinal Data)

See “Vector Model.r” script for example
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Example: Jacoby 2014

Respondents were confronted with “triads” of the following issues,
from which rankings were constructed
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Example: Jacoby 2014

Vector from dataset of rank-ordered value preferences
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Example: Jacoby 2014, cont’d

Plotting average vectors for partisan self-identifiers
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Example: Jacoby 2014, cont’d

Plotting average vectors for ideological self-identifiers
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Vectors and Angles

• Angles between vectors have same interpretation as with the
biplot or factor analysis

• Correlation between vectors = cosine of the angle between the
vectors:

cosθxy =
x · y
|x ||y |

• The length of x = |x | = x · x = x1x1 + x2x2...+ xmxm
• Can use the vector coordinations to calculate average vector,

or average vector for groups
I Direction of mean vectors will correspond to average

preference profile
I Length of average vector will correspond to homogeneity of

group preferences, where longer mean vectors denote greater
homogeneity of preferences

• Can use Analysis of Angular Variation (ANAVA), the vector
variant of ANOVA, to test whether group vectors are
significantly different
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Power of the Vector Model

• We reduced dimensionality

• Made a picture that is fairly easy to interpret

• Used some basic geometry to visually represent:

I The distribution of preferences
I Average preferences of particular groups, and within group

variance of those preferences
I Correspondence (correlation) between preferences of

individuals and groups

• Created a parsimonious measure of individual preferences that
can be used in subsequent statistical analyses
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Example: Jacoby 2014, cont’d

Can use individual vector positions along the unit circle to do a
“circular regression”

Conceptualize vector positions as angular deviations from some
arbitrary, fixed vector position (say, 12:00)
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Other MDS Models

• The IDIOSCAL model (variant of WMDS)

I WMDS where matrix is not constrained to be diagonal (i.e.,
merely stretching and shrinking the group configuration)

I This allows for unique dimensions for each
individual/country/whatever the individual dissimilarities
matrices correspond to

• MDS with External Constraints (variant of “Confirmatory
MDS”)

I Restrict objects to certain regions of the MDS space
I Perhaps some points should cluster, and others not

• MDS with Internal Constraints (variant of “Confirmatory
MDS”)

I Constrain the point configuration to take a particular shape
(geometric restrictions)

I Most common is spherical MDS where points are constrained
to align along a circle, sphere, or hypersphere
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