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Rotation
Robert 1. Jennrich

Introduction

Rotation arises in exploratory factor analysis and represents the primary distinction
between exploratory and confirmatory factor analysis. This chapter attempts to provide
an overview of the main components of rotation, from the work of Thurstone to the
present. These components are rotation methods, rotation algorithms, and standard
errors for rotated factor loadings.

Because it was simpler, early rotation methods used orthogonal rotation, and in par-
ticular varimax rotation. Today, because it is more general, oblique rotation is becoming
the standard. At first quartimin was the most popular form of oblique rotation, but now
qeomin seems to be replacing quartimin because geomin seems to work better for more
complex structures.

At first, every rotation method came with a rotation algorithm designed specifically
for the method, or more precisely for the criterion that defined the method. Today we
have algorithms designed to optimize arbitrary criteria. A new method is proposed by
defining its criterion, and a general algorithm is used to optimize it. This makes it much
easier to investigate new methods.

A number of rotation algorithms including general closed-form pairwise algorithms
for quartic criteria and general pairwise and gradient projection algorithms for arbitrary
criteria, are discussed below.

Standard errors for rotated loadings using linear approximation methods are also
reviewed. These include methods using the asymptotic distribution of the initial load-
ings, constrained maximum likelihood methods, nonparametric constrained minimum
deviance methods, and nonparametric pseudo-value methods.

The chapter concludes with a comparison of some popular rotation methods, the dif-
ficulties that arise when doing this, some advice on choosing a method, and some real
data examples.
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Exploratory Factor Analysis

The exploratory factor analysis (EFA) model has the form
x=Af+n, (10.1)

where «is a vector of observed responses, fis a vector of common factors, # is a vector of
unique factors, and A is a p x k matrix of factor loadings. It is assumed that the vectors f
and # have mean zero and are uncorrelated, and that the components of # are
uncorrelated.

Let @ and ¥ be the covariance matrices of fand #. Then the covariance matrix of xis

T=ADA +¥.

Extraction

An EFA begins with an extraction step. Assume @ =1I. Under this assumption an EFA
model is called an orthogonal model because the factors are uncorrelated. With this
assumption, X = AA’ + ¥. Let Sbe a sample covariance matrix and D(§, ) be a deviance
function that measures how close X is to S. Two popular deviance functions are the least
squares deviance function,

D(S,z)=||S-Z|?,
and the maximum likelihood deviance function,
D(S,2) =log(|Z]) + tr(SZ™") ~log(|S]) - 2.
The extraction step minimizes
D(S,AN' +'P)
with respect to A and ¥. Let A and ¥ be the minimizing values of A and ¥ produced

by the algorithm used for minimization. The matrix A4 is called an initial loading matrix.

Note that A is a function of the data, but by convention it does not carry a hat.
Finally, let

Y=AA+Y¥

be the estimate of T defined by A4 and .

Oblique rotation

Our interest is primarily in oblique rotation. Let

A=AT™!,
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where A is an initial loading matrix and T'is an arbitrary k x % nonsingular matrix with
rows of length one. For reasons that will become clear shortly this is called an oblique
rotation of the initial loading matrix A.

Let & = TT", and note that
AN + W= AT 'TT(T') 1A' + ¥ =44+ ¥-5.

Thus, 2 is determined only up to an oblique rotation of A. This is called the rotation
problem.

Among all oblique rotations of A, we seek one that looks nice—which more often
than not means looks simple.

Orthogonal rotation

A=AT,

where A is an initial loading matrix and T'is an arbitrary £ x k orthogonal matrix. Since
T is an orthogonal matrix, the rows of A are rotations of the rows of A. This motivates

calling A an orthogonal rotation of A.
Note that an orthogonal rotation is a restricted form of an oblique rotation, because
an oblique rotation

A=AT!?

becomes an orthogonal rotation when T'is an orthogonal matrix. An oblique rotation
does not rotate the rows of A. Nevertheless, it is called a rotation because it is a
generalization of an orthogonal rotation.

Because oblique rotation is more general than orthogonal rotation current practice
favors oblique rotation, and our discussion will be oriented toward the oblique case.

Dealing with the Rotation Problem

There are many orthogonal and oblique rotations of the initial loading matrix A
produced by the extraction step. The real rotation problem is choosing a rotation that
may be of interest. This is usually done by using a rotation criterion ((A) that measures
the complexity of A and minimizing this over all A that are rotations of A.

The main problem is, what does the vague statement “of interest” mean? One case is
clear. If each row of A has at most one nonzero element, A is said to have perfect simple
structure, an example of which is displayed in Table 10.1. However, there may not be a
rotation of A with perfect simple structure, and this is the usual case. Thurstone (1935)
proposed a less demanding definition of simple structure. The second loading matrix in
Table 10.1 has Thurstone simple structure, which requires a fair number of zeros, but
far fewer than perfect simple structure. The complexity of a row of A is the number of
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Table 10.1 Examples of perfect and Thurstone simple structure.

Perfect Thurstone
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nonzero elements in the row. Thurstone simple structure can have row complexities
greater than one. As with perfect simple structure there may be no rotation of A that
has Thurstone simple structure, and this is the usual case. It may, however, be possible
to find a rotation of A that approximates Thurstone simple structure, or even perfect
simple structure. The phrase “simple structure” is sometimes used to denote “perfect
simple structure,” and sometimes used to denote “approximate perfect simple struc-
ture”. Here, “simple structure” will mean “approximate perfect simple structure.”

Graphical Methods

The original rotation methods were graphical. The first term ¢ = Af in the factor analysis
model of Equation 10.1 is called the common part of x. The ith component of ¢ has
the form

C,‘=ﬂ.,‘]\ﬁ +---+}.,'kﬁ,.

This is plotted in Figure 10.1 for the case of two factors. Plotting all ¢; gives the repre-
sentation shown in Figure 10.2. The two-factor solution is obtained by choosing new

factors f; and}‘; through the clusters of ¢; and updating the 4;,.

For more than two factors one cycles through pairs of factors making similar plots.
Because it is better to actually do it than simply talk about doing it, the author attempted
to graphically rotate the well-known Thurstone 26-variable box data (Thurstone, 1947,
p. 371). Table 10.2 shows Thurstone’s results and those of the author.

To aid in comparing these solutions their sorted absolute loading (SAL) plots
(Jennrich, 2004) are given in Figure 10.3. The author did not do as well as Thurstone.
A proper solution is known to have 27 small values. Thurstone got 27 small values. The
author also got 27 small values, but clearly not as small. It is also known that a proper
solution has three pure indicators, and these should produce three distinctly larger
values. Thurstone found three distinctly larger values. The author failed to find these.
The only conclusion one can draw from Figure 10.3 is that Thurstone is much better at
graphical rotation than Jennrich.

While this may be the case, with the reader’s indulgence the author would like a
rematch. Thurstone’s 26-variable box problem is known as a hard problem. Many rota-
tion methods fail on this problem. Thurstone’s 20-variable box problem, on the other
hand, is much simpler. It was used to train students. Figure 10.4 shows the author’s and

fa
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Figure 10.1 Components of the common part of x for two factors.

Figure 10.2 All the common part components.

Table 10.2 Graphical solutions to Thurstone’s 26-variable box problem. The formulas on the
left were used to generate values for the 26 variables from the dimensions 3, %, and x3 of
Thurstone’s boxes.

Formula Thurstone Jennrich

X 95 .01 .01 98 .02 .02
x .02 92 .01 .04 97 -.02
x3 .02 .05 91 -.02 -.07 1.02
X152 .59 .64 -.03 .62 .69 -.05
x1%3 .60 .00 .62 .58 -.07 70
X3%3 -.04 .60 .58 -.05 .55 .63
) 81 .38 .01 .81 43 -.00
X152 .35 .79 .01 .36 .85 -.02
K353 79 -.01 41 77 -.05 46
X153 40 -.02 79 42 -.07 92
2x3 -.04 74 40 -.04 73 42
x2%3 -.02 41 74 -.05 .35 .80
x1/% 74 =77 -.06 75 -.83 .09
X2/ %1 -74 .66 .06 -75 .83 -.09
x1/%3 74 .02 -.73 .82 15 -.85
x3/%1 -74 -.02 73 -.82 -.15 .85
x2/%3 -.07 .80 -76 -.01 99 -91
X3/% .07 -.80 76 .01 -.99 91
2x1 + 2%, 51 .70 -.03 .53 76 -.06
2x1 +2%;3 .56 -.04 .69 .54 -.10 74
2x +2x3 -.02 .60 .58 -.03 .55 .62
(o2 + xgz)lﬂ .50 .69 -.03 .52 74 -.05
(o2 + x%)lﬂ .52 -.01 .68 51 w(s)i Z‘;
(2 + xg)lﬁ -.01 .60 .55 .01 . .
X1%%3 43 46 45 43 45 47

(’ﬁ +’é +x§)1a‘2 31 51 46 .32 49 48
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Figure 10.3 Sorted absolute loading plots for the 26-variable box problem.

Figure 10.4 Graphical representation of the gradient projection algorithm.

Thurstone’s results on this problem. Again, a proper solution should have 27 small
values. The author found these almost as well as Thurstone. A proper solution to this
problem is known to have nine pure indicators. The author found nine large values, as
did Thurstone, but the author’s are a little more distinct. The author would like to
declare this contest a tie.
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Analytic Methods

Analytic methods begin by choosing a rotation criterion Q defined on all p x £ loading
matrices A. (A) is a measure of the complexity of A. An analytic method proceeds by
minimizing

F(T)=Q(AT™)
over all nonsingular T with rows of length one. Using the minimizing value T

A=aT™ (10.2)

is the oblique rotation of A corresponding to Q. Some authors replace Tby T’ and write
f(T)= Q(A(T') '1) , but this seems unnecessarily complicated. Many rotation criteria

have been proposed. Some of the more popular are identified in the following
subsections.

Quartic criteria

By quartic criteria we mean criteria Q such that Q(A) is a quartic function of the
components of A. The earliest of these was the quartimin criterion,

r#s i

The quartimin criterion has a nice theoretical property. Quartimin rotation will produce
perfect simple structure whenever it exists. If A can be rotated to a loading matrix with close
to perfect simple structure, continuity suggests that quartimin rotation will do this as well.

A generalization of the quartimin criterion is the Crawford-Ferguson (Crawford &
Ferguson, 1970) family (CF) of criteria. Let 0 <x < 1. The CF criterion corresponding

to x is given by
Q(A)=(1-x) ZZ Zﬂ»?,ﬂ%: + KZZ Z}'%r}'}r'
r#s

# T

The first term of this criterion is a multiple of the quartimin criterion and can be
viewed as a measure of row complexity. The second term is a similar measure of column
complexity. The parameter x weights the two complexities. When x = 0 the CF criterion
is the quartimin criterion, and when x = 1/ it is the CF-varimax criterion.

The geomin criterion

The best known of the non-quadratic criteria is Yates’ (1987) geomin criterion,

1/k
Q(A) = Z (H’lfr) )
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where £ is the number of columns of A. Yates called this a geomin criterion because it is
the sum of the geometric mean of each row of A%, the element-wise square of A.

The geomin criterion Q has a nice theoretical property. If a loading matrix A has at
least one zero in each row then Y A) is zero, which is the smallest value it can have. If
there is a rotation A of an initial loading matrix 4 with at least one zero in each row, a
geomin rotation of 4 will have this property.

Ifthere is a rotation of A with perfect simple structure, some geomin rotation of A will
have perfect simple structure. Unfortunately this is not true for all geomin rotations of
A, but this seems to happen often in practice.

A problem with the geomin criterion is that it is not differentiable at A if A has one or
more components that are zero. This can make it difficult to minimize by analytic meth-
ods. Browne (2001) suggested dealing with this problem by replacing A,, in Yates’ for-
mula by A;, + €, where ¢ is a small positive value. This makes the resulting Q differentiable
atall A. Browne suggested using ¢ = .01. When used here, the geomin criterion will have
this modified form.

Bifactor criteria

Bifactor analysis is a form of confirmatory factor analysis using a factor loading matrix of
the form

* ok

* %k

(= = ]

*

* 0 x
* 0 *)
* 0 x
More precisely, the loadings in the first column are free parameters and after the first
column the loading matrix has at most one free parameter in each row. Loading matrices
of this form are said to have bifactor structure. In bifactor analysis the first factor is called
a general factor and the remaining factors are called group factors. Bifactor analysis is a
fairly extensively used form of confirmatory factor analysis.

Recently, Jennrich and Bentler (2011) introduced an exploratory form of bifactor
analysis. This was done by using orthogonal EFA with a rotation criterion that does
not involve the loadings on the first factor and encourages perfect simple structure
for the loadings on the remaining factors. To avoid confusion, they call this confirma-
tory bifactor analysis to differentiate it from exploratory bifactor analysis.

B(A) is called a bifactor rotation criterion if A minimizes B(A) if and only if A has
bifactor structure. The following theorem identifies a specific bifactor rotation criterion.

Theorem 10.1: If A is an arbitrary p x k loading matrix and

By(A) =qmin(Az),

where A, is the submatrix of A containing its last £ ~ 1 columns and qmin() is the
quartimin rotation criterion, then By is a bifactor rotation criterion.
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The criterion B, in Theorem 10.1 is called the biquartimin criterion. Although B.(A)
does not depend on the first column of A, when By(A) is used for rotation, it is all
columns of A, including its first, that are rotated.

Some care must be used in defining bifactor rotation criteria. One might be tempted
to use

B,(A) = -vmax(A;),

where vmax( ) is the varimax rotation criterion. The authors show that B, is not a bifactor
rotation criterion and that its use can lead to very poor results,

Other criteria

There are many other rotation criteria, including Bentler’s (1977) invariant pattern sim-
plicity criterion, McCammon’s (1966) minimum entropy criterion, and McKeon’s
(1968) infomax criterion. There is a cottage industry of numerous papers proposing
new criteria.

Reference structure and early analytic methods

Analytic oblique rotation was not originally formulated as described by Equation 10.2
because the required optimization, which involves T, seemed too difficult. Using T
can be avoided by using reference structures. Following Thurstone (1947) and Harman
(1976), let the rows of a nonsingular matrix U be biorthogonal to the rows of T and
have length one. Biorthogonal means the 7th row of Uis orthogonal to the sth row
of T'whenever r # 5. Let

R=AU'.
This is called the reference structure corresponding to U. Note that
R=AT-'TU’ -AD,

where Dis diagonal because the rows of T'and Uare biorthogonal. This result is of inter-
est because it means the columns of R are rescaled versions of the columns of A, and this
suggests that R is simple when A is simple, and conversely. Rather than apply a
complexity criterion to A one can apply it to R. The analytic rotation problem is then
to minimize

Q(R)=Q(AU")

over all nonsingular U with rows of length one. Here, U’ has replaced the T! in the
definition of an oblique rotation. Harman (1976) calls making R simple an indirect
method and making A simple a direct method because it simplifies the loadings directly.

Carroll (1953) has shown that when Qjis the quartimin criterion, X AU’) viewed as a
function of a single row of Uis a constant plus a homogeneous quadratic function of the
row. Because the row must have length one, an optimal value is the eigenvector of the
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matrix defining the quadratic function that corresponds to its smallest eigenvalue.
Cycling through the rows of U gives a relatively simple algorithm for minimizing
(R). Actually, this can be generalized to Carroll’s (1960) oblimin family of criteria.
It does not, however, seem to generalize to other criteria. For some time, indirect obli-
min was the standard method of oblique analytic rotation.

Direct methods

Indirect methods based on criteria applied to reference structures were eventually
replaced by methods based on criteria applied to loading matrices directly. The first such
method was introduced by Jennrich and Sampson (1966) for direct quartimin rotation.
Today, direct methods are standard. Algorithms for these will be discussed in the next
section.

Analytic Oblique Rotation Algorithms

In the beginning, all proposed rotation criteria came with a rotation algorithm designed
to optimize the specific proposed criterion. These algorithms were sometimes quite
complex. Later, algorithms were developed that worked for entire classes of criteria,
and later still algorithms that worked for essentially all criteria. Some of these will be
discussed here.

Closed-form pairwise algorithms for quartic criteria

Let i and f; be a pair of factors and consider rotating £ in the plane of f and f;. More
precisely, the new f] factor has the form

Fr=afi +af;

and has variance one. Jennrich and Sampson (1966) showed that the values of the
quartimin criterion under such rotations can be expressed as a fourth-degree polynomial
Q/(8) in 6 =ay /@. This may be minimized in closed form without iteration by solving
the cubic equation Q'(8) = 0. Cycling through all ordered pairs of factors gives a pairwise
algorithm for minimizing the criterion. This method generalized to the oblimin family
of criteria is used in a number of major software systems.

Although to date no formal proof has been given, this approach also works when the
quartimin criterion is replaced by any quartic criterion (A) that is invariant under sign
changes in the columns of A. These include essentially all quartic criteria, and in partic-
ular the oblimin and CF families of criteria. Because five values determine a quartic pol-
ynomial, (X5) can be found by evaluating Q at five loading matrices corresponding to
five values of 6. As a consequence, the only specific information required to implement
these methods is a formula for (A).

General pairwise line search algorithms

Browne and Cudeck have developed a pairwise line search algorithm for minimizing
arbitrary rotation criteria. Let {A) be any rotation criterion that is invariant under sign
changes in the columns of A. These include all criteria known to the author. As was done
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by Jennrich and Sampson, Browne and Cudeck let ; and £; be an arbitrary pair of factors
and consider rotating fi in the plane of f; and f;. For pairwise rotations of this form they
have shown that the values of the criterion Q can be expressed as a function (5) of the
parameter § used by Jennrich and Sampson. In general Q(8) will not be quartic, but it
can be minimized using a general line search algorithm. This forms a basis for a pairwise
algorithm for minimizing Q, This is a remarkable algorithm:

it works for almost any rotation criterion Q(A);

all that is required is a formula for Q(A);

it is remarkably simple;

it has been used successfully for many different criteria.

Unfortunately, Browne and Cudeck have not published an account of their method
or observations on its performance. Their method is used, however, by Browne,
Cudeck, Tateneni, and Mels (2002) in the CEFA (comprehensive exploratory factor
analysis) software. This free software deals with almost every aspect of EFA, including
a broad variety of methods for extraction and rotation, factoring correlation matrices,
and providing standard errors for the estimates produced. It has a graphical user inter-
face and a nice manual. The software and manual may be downloaded.!

Gradient projection algorithms

Jennrich (2002) gave a general gradient method that does not require cycling through
pairs of factors. The oblique rotation problem is to minimize

f(T)=Q(AT?)

over all T'in the manifold M of nonsingular T'with rows of length one. This is a slightly
more precise expression of the problem than that given earlier. The gradient projection
(GP) algorithm proceeds as follows.

Given a T € M and an arbitrary scalar @ > 0, compute the gradient G of fat T and
project X = T—-aG onto M—see Figure 10.4. The algorithm moves T in a negative
gradient direction and then projects the result back onto M. At first it seems like the
required projection may be difficult to find because projecting onto a nonlinear
manifold is a nonlinear regression problem and these generally require complex iterative
procedures. For the manifold M, however, projection is very easy and this is what
motivates the method. The projection T of X onto M is simply X scaled to have rows
of length one.

Theorem 10.2: If T'is not a stationary point of frestricted to M, then

£(T)<A(T)
for all @ > 0 and sufficiently small.

! http: /quantrm2.psy.ohio-state.edu/browne /
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Using Theorem 10.2, the GP algorithm halves an initial value of a until £(T) <£(T).

Replacing T'by T gives a strictly monotone iterative algorithm for minimizing fover M,
and hence Q over all rotations of the initial loading matrix A. Strictly monotone
algorithms are desirable because they must converge to stationary points. Moreover,
since the only points of attraction of a strictly monotone algorithm are local minima,
strictly monotone algorithms are almost guaranteed to converge to a local minimum.

This approach requires a formula for the gradient of Qin addition to a formula for Q.
Jennrich (2004 ) has shown that this problem-specific requirement can be removed with
almost no loss of precision by using numerical gradients. Using these, the gradient
projection algorithm has the same nice properties as the Browne and Cudeck line search
algorithm without the need to cycle through pairs of factors.

Free SAS, SPSS, R/S, and Matlab code for GP rotation can be downloaded.? Thus,
for almost any computing environment one is working in, one can find code written
specifically for that environment and hence code that may be used immediately without
any need for translation. There is code for both orthogonal and oblique rotation using
analytic and numerical gradients. The analytic gradients tend to be quite simple. They
are given for the most popular, and some less popular but promising, criteria.

Advantages and disadvantagés

The pairwise quartic algorithms have the advantage that no line search is required, and
they are probably the fastest of the algorithms discussed. Their main disadvantage is that
they are restricted to quartic criteria.

The main advantage of the general pairwise line search algorithm is that it applies to
arbitrary criteria and the only method-specific code required is that for evaluating the
criterion. Also, it is a very simple algorithm. Disadvantages are that it requires cycling
through pairs and requires a line search subalgorithm.

The main advantage of the GP algorithm is that it applies to arbitrary rotation criteria,
it does not require stepping through pairs of factors, and when using numerical gradi-
ents, it is very simple. When using analytic gradients, it appears to be significantly faster
than the general pairwise line search algorithm, at least in the limited experience of the
author. Its main disadvantage is that when used with analytic gradients it requires
method-specific code to produce these. Fortunately, gradient formulas for popular rota-
tion criteria are given at the URL cited above. While gradient formulas can be avoided

with almost no loss of precision by using numerical gradients, their use slows the
algorithm,

Choosing a Rotation Method

Up to this point we have not discussed the problem of choosing a rotation method.
Unfortunately, there is no right or wrong choice. Exploratory factor analysis is an
exploratory method. It is used to suggest a relation between observed variables and
latent factors. A rotation method suggests what such a relation may look like, but there
are many rotation methods and they can suggest different relations. It is the user who

2 http://www stat.ucla.edu/research/gpa
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must ultimately decide which if any of these may be of interest. The data can identify an
initial loading matrix, but it cannot determine what rotation, if any, is of interest in a
specific context.

There is some theoretical guidance:

¢ If an initial loading matrix can be rotated to a loading matrix with perfect simple
structure, the quartimin method will do this. Continuity suggests the quartimin
method will do this at least approximately when the initial loading matrix can be
rotated to a loading matrix that approximates perfect simple structure.

e Ifaninitial loading matrix A can be rotated to a loading matrix with at least one zero
loading in each row, a geomin rotation of A will have this property. When A can be
rotated to a loading matrix with at least one nearly zero loading in each row one
expects a geomin rotation of A will have at least one nearly zero loading in each row.

There is a cottage industry devoted to proposing new rotation methods. Every time a
new method is introduced its performance on one or two examples is given and com-
pared with one or two natural alternatives. The purpose is to show that the new method
works at least in appropriate circumstances. There are only a limited number of papers
that compare a number of popular methods on a number of examples from an unbiased
point of view. These include Browne (2001) and Schmitt and Sass (2011).

Browne looked at two classical examples, the 24 psychological tests problem
(Harman, 1976) and Thurstone’s (1947) 26-variable box problem. In the case of
the 24 psychological tests problem Browne found that an initial loading matrix can
be rotated to a loading matrix with simple structure using a number of methods, includ-
ing quartimin, CF-varimax, geomin, and infomax.

To investigate a more complex case Browne considered Thurstone’s 26-variable box
problem. Here there is a rotation that suggests the way the data were generated, and
Browne considered the ability of various methods to obtain this.

Among the methods considered, only geomin and infomax identified the way the
data were generated. Browne goes on to show how one can use Cureton and Mulaik
(1975) standardization to obtain satisfactory results for other methods as well. We will
not attempt to discuss this here.

Using a somewhat different approach, Schmitt and Sass (2011) began with the
population loading matrix A displayed in the first three columns of Table 10.3 above
the horizontal line. This has very a complex structure because it is far from perfect simple
structure. They used a population factor correlation matrix @ given by the 3 x 3 matrix
below the population loading matrix and for ¥ a diagonal matrix of unique variances:

.3188.3425.3315.1845.1518.3215.3315.0235.0713 .3695 .4303 .2845
.2123.0235.2535.3915.2563.3695

Rather than using A, ®, and ¥ to generate a sample and analyzing its correlation
matrix R, Schmitt and Sass constructed the population correlation matrix P and ana-
lyzed this rather than R. This avoids random results and the problem of choosing
the sample size #. What Schmitt and Sass did was to let # = c0. Their analysis should
give results that approximate large-# results. This seems like a good place to start when
comparing rotation methods.
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Table 10.3 Comparing rotations for a model with complex structure.

Population Quartimin Geomin CPFrarimax

075 025 015 079 007 003 074 011 007 072 013 0.09
075 010 025 078 -010 017 073 -0.06 021 072 -0.02 021
075 030 005 082 013 -009 076 018 -0.06 0.74 019 -0.02
075 045 010 077 027 -005 071 032 -0.03 070 032 001
075 015 045 070 -0.07 036 065 -004 040 065 0.01 0.38
075 020 020 078 001 009 073 005 013 072 0.08 0.14
005 075 030 -0.04 072 023 -004 075 018 -0.02 072 021
030 075 045 019 059 033 017 062 031 020 062 013
045 075 025 039 059 011 036 063 009 037 062 013
010 075 020 004 073 011 003 076 006 005 073 0.11
005 075 005 001 080 -0.06 001 084 -011 0.02 078 -0.04
030 075 015 027 066 002 025 071 -0.01 025 068 0.05
005 045 075 -013 034 075 -012 034 073 -0.06 038 0.68
045 030 075 029 010 068 028 012 069 032 017 0.65
030 020 075 015 0.04 076 014 004 0.76 019 010 0.70
015 010 075 -001 -0.03 084 -000 -0.04 084 005 0.03 076
025 025 075 009 010 076 009 010 075 014 016 0.70
020 010 075 005 -0.04 082 005 -004 083 010 0.02 075
1.00 040 040 100 066 072 1.00 0.64 0.67 100 059 0.60
040 100 040 066 100 066 064 100 070 059 1.00 0.59
040 040 1.00 072 066 1.00 067 070 1.00 060 0.59 1.00

Schmitt and Sass considered a number of popular rotation methods, but the primary
contenders were geomin, quartmin, and CF-varimax. They used a maximum likelihood
factor analysis program applied to P to produce an initial loading matrix A and
rotated this.

There is a way to obtain an inijtial loading matrix A corresponding to P that does not
require the use of an EFA program. One can simply unrotate A and ® by using a Cho-
lesky factorization to write ® in the form ® = TT'. Then,

T=ADN +¥=ATT'A' +¥.
Let D=diag(Z) /2. Then
P=DA®A'D+D¥D=(DAT)(DAT) + DOD=AA' + P,
where
A=DAT.

This A is an initial loading matrix that generates P. This is much simpler and more accu-
rate than running an iterative factor analysis extraction program to produce an initial
loading matrix.

Using the method just described, the results for quartimin, geomin, and CF-
varimax are given in Table 10.3. To the precision displayed, the quartimin and CF-varimax
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Table 10.4 Example 1 rotations

Canonical Orthogonal Oblique
54 42 -13 -0 -7 29 63 4 9 5 66 0 11 -1 -7
4 27 -8 6 -1 26 45 8 0 -2 47 8 -0 4 -3
59 42 -15 5 8 33 66 4 -4 5 74 1 -6 3 6
48 46 -16 5 6 22 65 2 -3 2 73 -2 -6 -4 1
59 40 -13 -0 -0 33 64 4 6 1 8 1 7 2 -1
50 3 33 22 -5 38 18 48 6 3 3 62 4 -4 1
50 -5 26 18 -5 42 13 39 5 1 -2 52 5 9 0
53 2 28 27 -11 41 20 48 4 -6 4 65 1 4 -9
53 -3 3¢ 14 11 44 14 43 3 20 1 53 1 1 21
54 -5 16 -21 25 48 16 7 12 38 9 0 19 10 44
62 -6 15 -24 -4 56 18 9 31 16 2 4 46 15 16
51 -7 24 -13 20 45 12 18 12 3¢ 2 15 17 5 39
62 9 2 -13 -4 50 34 6 19 7 26 3 29 16 8
63 4 21 -28 -20 51 25 14 47 7 5 9 66 1 3
74 -35 -26 1 -7 8 9 -10 -4 -12 1 -5 8 8 -6
70 -26 -7 8 1 74 11 9 -5 -2 1 17 1 61 4
68 -34 -20 7 8§ 78 6 -5 -14 -1 1 2 -9 79 8

results in Table 10.3 are the same as those in Table 10.4 of Schmitt and Sass. The geomin
results, however, differ significantly.

The value of the geomin criterion for the geomin result in Table 10.3 is 1.3231.
Schmitt and Sass do not report the value of the geomin criterion for their result, but
when it is computed from the rounded numbers in their Table 10.4 the value is
1.3491. Because this value is larger, this suggests that the Schmitt and Sass result
may be incorrect.

Schmitt and Sass don’t seem to have a favorite method. Instead, they show how the
methods they consider compare to one another, and in particular how the CF methods
change with increasing values of x. They consider a variety of values of x and observe that
as k increases the factor correlations decrease, but the complexity of the rotations
increases.

As noted above, the quartimin method is the Crawford—Ferguson method with x = 0
and the CF-varimax method corresponds to x=1/p. The factor correlations in
Table 10.3 decrease as « increases, in agreement with their observation. To consider
the change in complexity this author constructed SAL plots for the rotations in
Table 10.3. These are displayed in Figure 10.5. Schmitt and Sass call a loading 4;, a pri-
mary loading if its absolute value is the largest among the loadings in the same row, and
call it a cross loading otherwise. There are a total of 18 primary loadings in each loading
matrix. These are displayed in the upper left-hand corner of the plot.

The cross loadings for CF-varimax tend to be a bit larger than those for quartimin and
geomin. This is in agreement with Schmitt and Sass’ observation that complexity
increases with x. Overall, however, the methods displayed are more similar than differ-
ent. One might seek an example where differences are more dramatic. For the box data
considered by Browne, there was a substantial difference between quartimin and
geomin.
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Figure 10.5 Comparison using SAL plots.

At present, the only simple thing one can say about comparing rotation meth-
ods in the complex case is that it is complex. Clearly, more work on this case is
needed.

Where to start

The first problem faced by a factor analyst is where to start. For this, one can give fairly
reasonable advice.

° A number of popular EFA programs use a normal deviance function to extract an
initial loading matrix. This seems to work well and is probably a reasonable way to
begin. The normal deviance function is a proper deviance function and a reasonable
choice even when one is not sampling from a normal distribution.

o Because it is more general it seems reasonable to begin with oblique rotation and
reserve orthogonal rotation for applications where orthogonal rotation is required
or desired.

o Theory suggests that quartimin rotation works well when one is seeking simple
structure and some limited computer experience suggests that geomin may work
well when seeking rotations with simple and more complex structure.

A number of EFA programs use oblique quartimin or oblique geomin as default
choices for a rotation method, and presently at least these seem appropriate first choices.
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Standard Errors for Rotated Loadings

Measured in terms of actual computer usage, EFA is one of the most frequently used
methods of statistical analysis. Among statistical methods it is somewhat unique in that
standard computer implementations fail to produce standard errors for the parameter
estimates. For many forms of statistical analysis standard errors are a by-product of
the fitting procedure. This is true, for example, for regression analysis and the many
forms of analysis related to it. It is also true for confirmatory factor analysis, but because
of the rotation problem it is not true for EFA. Other methods for producing standard
errors are required. Here we outline a number of methods that may be used to produce
standard errors for rotated loadings. For the most part these are asymptotic methods
based on linear approximations. As discussed below, little progress scems to have been
made using less linear methods such as the jackknife, the bootstrap, and Markov chain
Monte Carlo (MCMC) methods. Cudeck and O’Dell (1994) discuss a variety of uses
for standard errors in EFA.

Historical note
An analytic rotation of an initial loading matrix A has the form

A=AT.
Because both A and T are random, Lawley and Maxwell (1971) believed that:

It would be almost impossible to take sampling errors in the elements of Tinto account.
The only course s, therefore, to ignore them in the hope they are relatively small.

Wexler (1968) provided some evidence that one cannot always ignore sampling
errors in T. Archer and Jennrich (1973) and Jennrich (1973) showed that the Lawley
and Maxwell approximation is not needed. This is discussed in the next subsection.

Methods using the asymptotic distribution of the initial loadings

Under appropriate assumptions an initial loading matrix A is asymptotically normally
distributed. More precisely, if # is the sample size used to compute 4, then as #— oo,

vn(a-a) — N(0,acov(a)),

where 2 is A written in vector form, a is a constant vector, and acov(#) is the asymptotic
covariance matrix for 4.
Results of this form have been given by

Anderson and Rubin (1956) for principal component EFA and normal sampling;
Lawley (1967) for canonical loadings and normal sampling;

Joreskog (1969) for confirmatory factor analysis and normal sampling;

Browne (1984) for confirmatory factor analysis and non-normal sampling;
Girshick (1939) for principal component analysis and normal sampling.
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Actually, Lawley’s formula for acov(4£) has an error that was corrected by Jennrich and
Thayer (1973).

The confirmatory factor analysis approach is particularly attractive. It assumes that the
upper diagonal part of A is zero. A standard confirmatory factor analysis then produces
an estimate for acov(4) as a by-product of the analysis.

Consider any analytic rotation. Let A be the initial loading matrix and let A be the
corresponding rotated loading matrix, which is a function of A. In vector form let

A=h(a).

Assuming that a is asymptotically normally distributed, it follows from the delta method
that 1 is also, and that

A= %acov(u)gk,-
V= da da’

where db/da is the Jacobian of 4 at 4. Thus, the problem of finding the asymptotic
distribution for rotated loadings given that this is known for the corresponding initial
loadings reduces to finding the Jacobian of the function that defines the rotation.
Jennrich (1973) has shown how to compute d’/da using implicit differentiation.

Constrained maximum likelihood methods

For the case when the observed responses are a normal sample Jennrich (1974) used a
result of Silvey (1971) on constrained maximum likelihood estimation to find the

asymptotic distribution of the rotated loadings A.
Let A be A written as a vector, ¢ be the upper-diagonal part of ® written as a vector,

w be the diagonal of ¥ written as a vector, 8= (4',¢,y’)’ be the complete parameter
vector, and #8) be the likelihood of 8 given the observed responses.

This likelihood is over-parameterized. Jennrich (1973) has shown, however, that for
oblique rotation, A and ® must satisfy the stationary condition

ndg (A’%Q'l) =0.

Wirite this as
»(6)=0.

Let ¢ be the Jacobian of ¢ at 8 and Z be the information matrix at 8. Using Silvey’s
result on constrained maximum likelihood estimation,

(Zo) (=@ ),
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That is, when the augmented information matrix on the left is inverted, what is in the
upper left-hand corner of the inverse is the asymptotic covariance matrix for the

constrained maximum likelihood estimate #. If Z and ¢ are replaced by sample
estimates, what is in the upper left-hand corner of the inverse is a consistent estimate

of the asymptotic covariance matrix of §. This can be used to assign standard errors
to the factor loading estimates 4;,. If @ is computed numerically, this is a very simple
approach when using maximum likelihood factor analysis.

A method based on the asymptotic distribution of s = vech(S)

A difficulty with the previous approach is the assumption that one is sampling from a
normal distribution. In practice this is at best only approximately true. To relax
this assumption, consider the use of a method based on the asymptotic distribution
of s = vech(S), where vech(S) is a column vector containing the diagonal and upper
diagonal components of the sample co- variance matrix S.

More specifically, let 8 be the parameter vector defined in the previous subsection.

An EFA estimate § of these parameters is a function of s. That is,
6=h(s).

Let I be the asymptotic covariance matrix for 5. By the delta method, the asymptotic
covariance matrix for 6 is given by

acov () = h(o)Th(o)',

where 6 = vech(Z) and /(o) is the Jacobian of 4 at . This can be consistently esti-
mated using

ov (8) = A(s)T"A(s)',

where [ is a consistent estimator of . The diagonal elements of &cov (9) can be used to
assign standard errors to the components of 8, including the factor loadings :1;1-.

To use this apparently very simple method one needs a formula for k(s) and I*. In EFA
there is no formula for 4(s). The estimate & is implicitly defined as a vector that minimizes

£(8,5) = D(S,ADA’ +¥)
and satisfies (@) =0, where
dQ
_ ' -1
®(6) =ndg (A ® )

and Qs the criterion used to define the rotation. Let

f1(015)
01 = )
4(6,s) (w(ﬂ) )
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where f(6,s) is the Jacobian of f8,s) viewed as a function of its first argument. It
follows that

One can use this and implicit differentiation to find a formula for #(s). Since 8= h(s),

I(h(s),5)=0.

Differentiating this with respect to s gives
51(0(s),5)h(s) + 2 (h(5),5) =O.
Solving for /(s) gives

b(s) = =g (b(s),9) " 2 ((s),9)-

When using a least squares or normal deviance function the derivatives 4, (6,s) and
J,(8,5) can be computed easily using numerical differentiation and, with some effort,

analytically as well.
A convenient estimator for I' is the sample covariance matrix of the » vectors

d; =vech((x;- %) (% —’_C),)§

see, for example, Satorra and Bentler (1990, Formula 2.4).
One trouble with the method of this subsection is that it has not been published. The
author suspects, however, it is the method used in CEFA.

Pseudo-value methods

In practice researchers analyze sample covariance matrices S that probably were not
generated by a factor analysis model. In fact, this is probably the usual case. These
analyses violate the assumptions made by the standard error methods discussed above.
One might wonder if it is nevertheless possible to provide standard errors for the
estimates A,®, and ¥ produced by these analyses. This can in fact be done using the
infinitesimal jackknife (IJK).

Jennrich (2008) showed how to use the IJK to produce standard errors for a covar-
iance structure analysis of nonnormal data. This proceeds as follows.

Let S be a sample covariance matrix for a sample %, ..., %, and let

6=h(S),
where 4 is an arbitrary function. For each x; the IJK produces a pseudo-value

9; = dhs((x;—a?:)(x,-—fc)),
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where dbg s the differential of 4 at S. The sample covariance matrix of these values is a

consistent estimate of the asymptotic covariance matrix for 8.
The IJK method has several advantages.

* Itis a non-parametric method. One can sample from any distribution.

® The covariance structure 2(8) need not be correctly specified. That is, there may be
no 6 such that () is equal to the covariance matrix for the population sampled.
This is important because in practice it almost never is.

* The third and fourth sample moments of the sample values x, are not required.

° The only real difficulty when using this method is finding the derivatives of Dand %,
which is simple if numerical derivatives are used, but can be a bit messy otherwise.

In the context of EFA, Zhang, Preacher, and Jennrich (2012) have shown how to use
the IJK methods of Jennrich (2008) to produce standard errors for an EFA of a sample
correlation matrix obtained from a nonnormal sample. This is important because in prac-
tice one often analyzes sample correlation matrices rather than sample covariance matrices.

The authors give explicit formulas for ordinary least squares and maximum likelihood
extraction and for arbitrary CF rotation. They indicate the modifications required for
the analysis of a sample covariance matrix rather than a sample correlation matrix.

Because these IJK methods are nonparametric and do not require data generated by a
correctly specified factor analysis model they may provide an attractive option for gen-
eral purpose factor analysis software such as SAS, SPSS, Stata, CEFA, and Mplus.

Less linear methods

By less linear methods we mean things like the jackknife, the bootstrap, and for Bayesian
estimation MCMC methods. Pennell (1972) and Clarkson (1979) have used the jack-
knife to produce standard errors for rotated loadings. The basic jackknife uses # jack-
knife values each of which requires carrying out a factor analysis extraction and
rotation. Doing this # times makes this an expensive procedure. Jackknifing by groups
helps to reduce this expense, but the main problem with using the jackknife concerns
alignment. In EFA the rotated loading matrix A is determined only up to column per-
mutation and column sign change. To make the jackknife work the generated loading
matrices must be aligned. Doing this in an automated way that is good enough for jack-
knifing is pretty much an unsolved problem. Alignment failures can have devastating
effects on jackknife standard error estimates.

There is also considerable expense when using bootstrap methods, and again align-
ment is the main problem. MCMC methods face these problems as well, and require a
parametric form for the sampling distribution of ». At present the only feasible estimates
for standard errors of rotated loadings seem to be linearization methods like those in the
previous subsections.

Some Examples Using Real Data

Chen, West, and Sousa (2006) used a 17-variable quality of life data set to compare two
methods of analysis. The covariance matrix for their investigation is given in their paper
and will be used here.
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Example 1: Comparing orthogonal and oblique rotation

Using the covariance matrix of Chen et al., maximum likelihood EFA was used to

extract initial loadings A and unique variances ¥. The initial loadings are given on
the left-hand side of Table 10.4. To simplify comparisons the loadings have been
rounded to two decimal places and the decimal points removed. These loadings are
canonical loadings, which means A’ ¥~! A is diagonal. They are the loadings initially pro-
duced by standard maximum likelihood EFA programs. It is these loadings that are
rotated to produce various forms of rotated loadings.

Many EFA programs do not display the initial loadings they produce. We obtained
these by requesting “no rotation.” To compare orthogonal and oblique rotation we have
used the quartimin criterion because it can be used for either orthogonal or oblique rota-
tion. The orthogonal and oblique quartimin rotations of A are also given in Table 10.4.
Clearly the oblique rotation is much closer to simple structure than the orthogonal rota-
tion. Thisis also displayed by the SAL plots given in Figure 10.6. Clearly the oblique load-
ings are much closer to simple structure than the orthogonal loadings. One expects this in
general, because there are many more oblique rotations of A than orthogonal rotations.

Example 2: Comparing quartimax and varimax rotation

The earliest analytic rotations were orthogonal and based on the quartimax criterion.
Varimax rotation was introduced to reduce the tendency of quartimax to weight too
heavily on the first factor.

Table 10.5 contains quartimax and varimax rotations of the initial loading matrix A
from the previous subsection.
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Figure 10.6 Comparison using SAL plots.
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Table 10.5 Example 2 rotations
Qunartimax Varimax

29 63 4 9 -5 17 65 12 18 -0
26 45 8 0 -2 17 47 15 9 3
33 66 4 -4 5 21 69 13 8 11
22 65 2 -3 2 12 66 9 5 6
33 64 4 6 1 21 66 13 17 6
38 18 48 6 3 20 18 55 17 9
42 13 39 5 1 27 14 47 16 8
41 20 48 4 -6 25 21 56 15 1
44 14 43 3 20 25 15 50 16 26
48 16 7 12 38 31 18 16 27 44
56 18 9 31 16 38 20 19 45 21
45 12 18 12 34 28 13 25 26 40
50 34 6 19 7 35 36 17 33 13
51 25 14 47 7 30 25 23 59 10
84 9 -10 -4 -12 82 18 10 17 2
74 11 9 -5 -2 66 17 25 14 11
78 6 -5 -14 -1 75 14 14 6 13

Varimax does seem to load the first factor more lightly and spread the loadings across
factors more than quartimax does, which is as expected. The differences in this example,
however, are not great, and neither is close to simple structure.

Quartimax rotation is the same as orthogonal quartimin rotation (Harman, 1976,
p. 284). Thus the orthogonal quartimin rotation in Table 10.4 is the same as the
quartimax rotation in Table 10.5.

Example 3: Exploratory bifactor rotation

Chen et al. used their data to compare confirmatory bifactor and two-stage factor anal-
ysis models for their quality of life data.

Building a bifactor model is a bit of a project. Chen et al. used a standard bifactor
model for quality of life data based on a number of earlier studies and goodness of fit
testing to help identify structural zeros. We will use exploratory bifactor analysis to
see what bifactor model their data might suggest without any prior knowledge about
the quality of life data.

An exploratory bifactor analysis of their data using the biquartimin criterion defined in
Theorem 10.1 gave the loading matrix in Table 10.6. One can use Table 10.6 to suggest
a bifactor model by setting all loadings with absolute value less than 0.02 equal to zero.
This gives the loading matrix in Table 10.7.

The bifactor model suggested by Table 10.7 agrees exactly with Chen et al.’s standard
model except for the three loadings on the third factor denoted by an “x.” These were free
loadings in Chen et al.’s model. In Chen et al.’s confirmatory analysis the loading esti-
mates in these three positions were “insignificant.” This motivated Chen etal. to suggest
that the third group factor might be absorbed by the general factor and dropped. A less
extreme alternative suggested by Table 10.7 would be to retain the third group factor, but
add structural zeros in the positions containing an x. In any event, exploratory bifactor
analysis has effortlessly discovered a bifactor model that is at least close to that found
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Table 10.6 Exploratory bifactor rotation loading matrix.

0.46 0.52 0.02 0.09 0.00
0.38 0.36 0.05 0.00 0.02
0.51 0.53 -0.02 -0.06 0.00
0.41 0.55 -0.01 -0.05 -0.03
0.51 0.51 -0.00 0.04 0.01
0.53 -0.01 0.35 -0.01 -0.07
0.51 -0.04 0.29 0.00 0.02
0.53 0.03 041 0.00 0.01
0.60 -0.09 0.22 -0.09 -0.08
0.61 -0.08 -0.19 -0.03 -0.04
0.64 -0.03 -0.07 0.23 0.06
0.60 -0.12 -0.08 -0.03 -0.07
0.59 0.17 -0.03 0.15 0.08
0.64 0.04 0.00 0.39 -0.01
0.62 0.02 -0.02 0.06 0.60
0.63 -0.02 0.07 -0.02 0.39
0.60 -0.04 -0.02 -0.09 0.51

Table 10.7 Adjusted exploratory bifactor rotation loading
matrix.
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0.38 0.36
0.51 0.53
041 0.55
0.51 0.51
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by Chen etal., and this suggests that exploratory bifactor analysis, which is a form of EFA,
may be a valuable tool for constructing confirmatory bifactor models.

Discussion

We have given a primarily historical overview of rotation methods in EFA. This included
a discussion of rotation, rotation criteria, rotation algorithms, choosing a rotation
method, producing standard errors for rotated loadings, and some real data
applications.
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The problem of extracting initial loadings is fairly well resolved. Least squares and
maximum likelihood extraction seem to work well.

We seem to have done very well on the algorithm problem. In a sense the problem is
solved. The very general and simple pairwise line search algorithm of Browne and
Cudeck and the faster gradient projection algorithm of Jennrich allow one to optimize
almost any rotationcriterion. There is always room for improvement, but the need at
present is not pressing.

The problem of assigning standard errors to factor loading estimates is also fairly well
resolved using the linearization methods discussed, and in particular the infinitesimal
jackknife method.

Choosing a good rotation method is a difficult problem. EFA is an exploratory
method that suggests a relation between observed variables and unobserved factors.
But different rotation methods suggest different relations. A rotation method that
makes sense in one application may not be satisfactory in another. It is ultimately the
user who must decide which rotation, if any, is best in a particular application.

For those seeking loading matrices with simple structure, quartimin and geomin seem
to work well when it is possible to have such rotations.

When it is not possible to obtain rotations with simple structure, or structures with
greater complexities are desired, little progress has been made to recommend a specific
choice. The best we have at present are a few examples for which desirable rotation
methods have been identified, for example geomin on Thurstone’s box problem. In
the complex case the problem of comparing rotation methods or choosing a good rota-
tion method appears to be stalled. Some new ideas are needed.

We have recommended the use of numerical derivatives in several places. Psychome-
tricians and more generally statisticians seem to fear numerical derivatives. What they
should fear are the consequences of failing to try new methods because the derivatives
required are too complex. The work described here suggests that numerical derivatives
can produce accurate results and can greatly simplify what would otherwise be very com-
plicated methods.

References

Anderson, T. W. & Rubin, H. (1956). Statistical inference in factor analysis. Proc. Third Berkeley
Symp. Math. Statist. Probability, 5, 111-150.

Archer, C. O. & Jennrich, R. I. (1973). Standard errors for rotated factor loadings. Psychometrika,
38, 581-592.

Bentler, P. M. (1977). Pactor simplicity index and transformations. Psychomerrika, 42,277-295.

Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariance
structures. British Journal of Mathematical and Statistical Psychology, 37, 62-83.

Browne, M. W. (2001). An overview of analytic rotation in exploratory factor analysis. Multivar-
iate Behavioral Research, 36, 111-150.

Browne, M. W., Cudeck, R., Tateneni, K. & Mels, G. (2002). CEFA: Comprehensive Explora-
tory Factor Analysis, Version 1.10 [ Computer software and manual]. Retrieved from http://
quantrm2.psy.ohio-state.edu/browne /

Carroll, J. B. (1953). An analytical solution for approximating simple structure in factor analysis.
Psychometrika, 18, 23-28.

Carroll, J. B. (1960). IBM 704 program for generalized analytic rotation solution in factor anal-
ysis. Harvard University, unpublished.



304 Robert 1. Jennrich

ChenFE.F.,West S. G. & Sousa K. H. (2006). A comparison of bifactor and second-order models
of the quality of life. Multivariate Behavioral Research, 41, 189-225.

Clarkson, D. B. (1979). Estimating the standard errors of rotated factor loadings by jackknifing.
Psychometrika, 44, 297-314.

Crawford, C. B. & Ferguson, G. A. (1970). A general rotation criterion and its use in orthogonal
rotation. Psychometrika, 35, 321-332.

Cudeck, R. & O’Dell, L. L. (1994). Application of standard error estimates in unrestricted factor anal-
ysis: Significance tests for factor loadings and correlations. Psychological Bulletin, 115, 475-487.

Cureton, E. E. & Mulaik, S. A. (1975). The weighted varimax rotation and the promax rotation.
Psychometrika, 40, 183-195.

Girshick, M. A. (1939). On the sampling theory of roots of determinantal equations. Annals of
Mathematical Statistics, 10, 203-224.

Harman, H. H. (1976). Modern factor analysis (3rd ed.). Chicago, IL: University of Chi-
cago Press.

Jennrich, R. 1. (1973). Standard errors for obliquely rotated factor loadings. Psychometrika, 38,
593-604.

Jennrich, R. I. (1974). Simplified formulae for standard errors in maximum likelihood factor anal-
ysis. British Journal of Mathematical and Statistical Psychology, 27,122-131.

Jennrich, R. . (2002). A simple general procedure for oblique rotation. Psychometrika, 66,289-306.

Jennrich, R. I. (2004). Derivative free gradient projection algorithms for rotation. Psychometrika,
69, 475—480.

Jennrich, R. I. (2008). Nonparametric estimation of standard errors in covariance analysis using
the infinitesimal jackknife. Psychometrika, 73, 579-594.

Jennrich, R. I. & Bentler, P. M. (2011). Exploratory bifactor analysis. Psychometrika, 76, 537-549.

Jennrich, R. 1. & Sampson, P. F. (1966). Rotation for simple loadings. Psychometrika, 31,313-323.

Jennrich, R. I. & Thayer, D. T. (1973). A note on Lawley’s formulas for standard errors in max-
imum likelihood factor analysis. Psychometrika, 38, 571-580.

Joreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis.
Psychometrika, 34, 183-202.

Lawley, D. N. (1967). Some new results on maximum likelihood factor analysis. Proceedings of the
Royal Sociery of Edinburgh, A67, 256-264.

Lawley, D. N. & Maxwell, A. E. (1971). Factor analysis as a statistical method. New York, NY:
Elsevier.

McCammon, R. B. (1966). Principal component analysis and its application in large-scale corre-
lation studies. Journal of Geology, 74, 721-733.

McKeon, . ]. (1968). Rotation for maximum association between factors and tests. Unpublished
manuscript, Biometric Laboratory, George Washington University.

Pennell, R. (1972). Routinely computable confidence intervals for factor loadings using the “jack-
knife.” British Journal of Mathematical and Statistical Psychology, 25, 107-114.

Satorra, A. & Bentler, P. M. (1990). Model conditions for asymptotic robustness in the analysis of
linear relations. Computational Statistics and Data Analysis, 10, 235-249.

Schmitt, T. A. & Sass, D. A. (2011). Rotation criteria and hypothesis testing for exploratory factor
analysis: Implications for factor pattern loadings and interfactor correlations. Educational
and Psychological Measurement, 71910, 95-113.

Silvey, D. S. (1971). Statistical inference. Baltimore, MD: Penguin Books.

Thurstone, L. L. (1935) Vectors of the mind. Chicago, IL: University of Chicago Press.

Thurstone, L. L. (1947) Multiple factor analysis. Chicago, IL: University of Chicago Press.

Wexler, N. (1968). An evaluation of an asymptotic formula for factor loading variance by random
methods. Unpublished doctoral dissertation. Rutgers University.

Yates, A. (1987). Multivariate exploratory data analysis: A perspective on exploratory factor anal-
ysis. Albany, NY: State University of New York Press.

Zhang, G., Preacher, K. J. & Jennrich, R. 1. (2012). The infinitesimal jackknife with exploratory
factor analysis. Psychometrika, 77, 634-648.



