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Classical Test Theory and Item
Response Theory

Christine E. DeMars

CTT

Classical Test Theory (CTT) is fundamentally a test-level theory, not an item-level
theory. The true score (T) is the foundation of CTT. Each time we test an examinee,
we obtain an observed score (X). Imagine that we could erase the examinee’s memory
and restore her physiological state to exactly what it was at the beginning of the test and
then test her again, resulting in another X. Repeat this an infinite number of times. T is
defined as the expected value (mean) of the examinee’s Xs: T = e(X). Note thatin CTT,
the true in true score does not refer to some objective inner property of the person,
which is sometimes termed the Platonic true score (Lord & Novick, 1968; Sutcliffe,
1965). The CTT true score simply indicates the expected value of the observed score
over repeated testings under the same conditions. Conceptually, many people would
think of true score as an examinee’s score under ideal testing conditions — what the
examinee could do if motivated and not anxious or distracted. But that is not what true
score means in CTT.

Assumptions

Several mathematical assumptions (axioms') are needed to define CTT. These assump-
tions can be found in many sources (e.g., Allen & Yen, 1979; Crocker & Algina, 1986;
Lord & Novick, 1968). A selection of the key assumptions is described here. In the fol-
lowing, the subscript p will indicate the person (examinee). A dot in the subscript indi-
cates the mean over the elements (in the immediate context, persons) represented by the
subscript. Subscripts will be dropped for all variances, covariances, and correlations
because those terms must refer to persons, not means across persons. These assumptions

! Raykov & Marcoulides (2011, p. 121) discourage the use of the word assumption in this context because
these assumptions are not falsifiable. I am using the term to mean axiom or postulate. Also, Raykov & Mar-
coulides note that many of the assumptions I have listed do not necessarily follow from the definition of X=T
+ E. I have chosen the axioms used to derive the most common formulas used in CTT. Different axioms will
lead to different formulas.
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are defined in terms of the population values. Later in this chapter, sample estimates will
be indicated by the symbol * over the appropriate index. Variance will be symbolized by
o2, covariance by o, and correlation by p, each followed by the variable in parentheses.
Note that the symbol for correlation is the Greek rho (p), which unfortunately looks
very similar to p.

1 X,=Tp+E; X and T were defined previously as observed score and true score,
respectively. E indicates random error. Errors are linearly uncorrelated with true
score: p(TE) =0.

2 The errors from two measurements are uncorrelated, or linearly independent. If E;
and E, are the errors corresponding to two measurements for person p, p(E; E,) = 0.
It follows that p(T;E,) =0 and p(T,E;)=0.

3 &(Xp)=T,. It follows that e(Ep) = 0. It also follows at the group level that ¢(E. ) = 0.

Although oz(Ep) may differ for individuals, the mean error variance within
persons equals the error variance across persons. Because the group error variance
can be estimated accurately with just two measurements (or two subdivisions of a
single measurement), it is often substituted as an estimate for each examinee’s error
variance (Lord & Novick, 1968, p. 155). Within a person, o(E)is called the standard
error of measurement (SEM).

4 Test reliability is defined as the squared correlation between the observed score and
the true score: p*(XT). This is equivalent to the proportion of variance in the

observed score due to true-score variance: p*(XT)= :zg; (see Allen & Yen,
1979, Ch. 3, or Lord & Novick, 1968, Ch. 3, for derivations). Or equiva-
o’(X)-o*(E) o’ (E)
2 - -1_
lendly XD =3y -l @D+ @)

5 Parallel measurements are defined as measurements that have equal means,
equal true-score variances, equal error variances, and equal correlations with the
true-score. The observed score variances must also be equal because 6*(X) = 6%(T)
+0%(E). If X' is an observed score on a measurement parallel to X, E(Xp) = E(X'p),
o*(E) = 6*(E'),06%(X) = 6*(X"), p%(XT) = p(X'T), and 6(XX') = 6*(T). It follows that
p(XX') = p*(XT).

Tau-equivalent forms are defined as measurements that have equal true scores T; and
T, for each examinee, but o*(E;) and ¢*(E,) may differ, where the subscripts 1 and
2 arbitrarily differentiate the two measurements. Essentially T-equivalent forms are
defined as T, = Tp + k for each examinee, where k is a constant. Thus, all parallel forms
are necessarily T-equivalent and all T-equivalent forms are necessarily essentially T-equiv-
alent. The models are nested. The correlation between T-equivalent scores is equal to
the correlation between essentially t-equivalent scores, because adding a constant to a
score does not change the correlation. The covariance between essentially z-equivalent
scores equals the covariance between parallel scores; both equal *(T). But the corre-
lation between parallel scores is not necessarily equal to the correlation between essen-
tially T-equivalent scores (unless the t-equivalent scores happen to be parallel) because
the denominator of the correlation coefficient includes o*(E).

Congeneric forms may have different 6*(T) as well as different 6?(E) and different
E(X,). Tzp =cTyp + k, where ¢ and k are constants. Essentially T-equivalent scores are
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nested within congeneric scores. The assumption of linearly uncorrelated errors extends
to t-equivalent, essentially T-equivalent, and congeneric scores.

Estimating reliability and the SEM

Hypothetically, the p*(XT) and oz(Ep) could be known if we could test an infinite pop-
ulation, wipe out the memories of the participants and restore their psychological and
physical states, and test them again and again. Then, we would know T}, for each person,

as well as 6*(E), the mean 6%(E,,) and could calculate p?(XT) = 1 - ﬁ%.

could test each person in our infinite population just twice, as long as we did the memory
erase and restore, and calculate reliability as the correlation between the two testings and
then solve for *(E). In this hypothetical realm, the distinction between using the same
test form or parallel forms is moot, because the properties of X and X' are identical.

Of course, this scenario is impossible. Instead, reliability is typically estimated either
by administering the same test twice (test-retest reliability, coefficient of stability) or by
administering two test forms that are as nearly parallel as possible (alternate forms
reliability, coefficient of equivalence), or by treating parts within the test as separate
measurements (internal consistency). With either of the first two designs,
p?(XT) = p(XX') is the correlation between the two measurements. Then 6*(E) can
be solved by substituting the empirical estimates 6*(X) and p(XX') for 6*(X) and
p(XX') into a re-arranged form of the reliability definition:

o*(E) = o(X)v/1-p(XX) (2.1)

Or the error variance could be estimated as half the variance of the squared difference

> (dp-d)®

between the two scores: 62(E) = p—Zn_’ where d;, = X;, — X/,,. If we assume errors

Or we

are normally and identically distributed, the SEM (square root of 6*(E)) can be used to
build confidence intervals around each X. Obviously conditional errors cannot be
identically or normally distributed if X is the sum of the number of correct items
(Lord & Novick, 1968, p. 502), but the approximation may be reasonable for scores
away from the extremes of 0 and 100%. The assumption of normality is not necessary
for the derivations in CTT; it only comes into play as one method of estimating
confidence intervals.

Each of these methods is a lower-bound estimate of reliability if the assumption of
linearly independent errors is met (Sitjsma, 2012; also see the discussion of these
concepts in Lord & Novick, 1968, pp. 134-137). Alternate forms underestimates
reliability to the extent that the forms are not truly parallel. Test-retest underestimates
reliability to the extent that examinees’ true scores change between measurements,
possibly due to learning or even minor changes in mood or physical state. Some of
the formulas based on subdividing the test, to be discussed in a later section, underes-
timate reliability to the extent that the parts are not essentially T-equivalent. However, if
the errors are correlated, reliability may be overestimated (Green & Yang, 2009;
Komaroff, 1997; Zimmerman, Zumbo, & Lalonde, 1993), or underestimated less than
it would otherwise be. In the test-retest design, for example, the assumption of
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uncorrelated errors may be violated because examinees may remember specific items.
For internal consistency estimates, if the part tests are individual items, items linked
to a common context may have correlated errors.

Subdividing the test Sometimes it is not practical to administer two full-length test
forms, either alternate forms or the same test on two occasions. If both measurements
are taken at the same time, examinees may not be able to maintain concentration and
motivation. If the measurements are obtained at separate times, the testing conditions
may vary too much to be considered parallel; learning may have taken place in between
the testings, or the examinees’ psychological states may have changed beyond what the
researcher is willing to consider error. Additionally, researchers generally want to min-
imize testing time. Testing takes time that could be spent in other ways, such as learning
if the testing takes place in school, or a myriad of personal activities if the testing takes
place outside of school. Thus, very often, reliability is estimated from a single
measurement.

To estimate reliability from a single test form, X must be subdivided into two or more
scores. The resulting reliability estimate is sometimes called a measure of internal con-
sistency, because it is an index of how consistent scores from the parts of the test are. For
example, to calculate a split-halves reliability estimate, the items are divided into two
scores, X; and X,, that are as nearly parallel as possible. The Pearson correlation between
X; and X, is corrected by the Spearman-Brown prophecy formula p(XX')=

2p(X1X3)
1+ p(X1X2)’
length. Or reliability can be estimated by Rulon’s formula: p(XX')=
o2(X1) +o2(X3)

which estimates what the correlation would be if X; and X, were both full

2(1- 2X) , where X is the full test score. If the test halves are parallel, these
c

methods will be equivalent. Otherwise, the estimate from Rulon’s formula will be

slightly lower.

If X is subdivided into more than two parts, Rulon’s formula generalizes to coefficient
a (Cronbach, 1951), equivalent to Guttman’s (1945) Az. This is often called Cron-
bach’s alpha, although Cronbach discouraged this label and noted that the same result
had been derived by others (Cronbach, 2004, p. 397). The computationally-simplest

k
ZGZ(Xi)

form of a= 1-i=t

1 <X |’ where £ is the number of subtests and ¢ indexes

the subtest. Lowercase x is used here for the score on a subtest or item, to differentiate
it from the total score X2. As with Rulon’s formula for split-halves, coefficient a is a
lower-bound estimate of reliability. If the subparts of the test are not at least essentially
T-equivalent, coefficient a will underestimate the correlation between parallel measure-
ments, the classic definition of reliability. However, as will be discussed in a later section,
Cronbach (1951) broadened the definition of parallel forms to include randomly
parallel forms. I will use the term classically parallel to indicate the traditional meaning

2This departs from the statistical convention of uppercase for random variables and lowercase for the value of a
random variable.
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of parallel as measurements with exactly the same T;, for each person and the same
o*(E), and randomly equivalent to indicate Cronbach’s randomly parallel measure-
ments. When the part tests are not t-equivalent and the assumption of uncorrelated
errors is met, coefficient o is an underestimate of the correlation between classically par-
allel forms, but it is an accurate estimate of the correlation between randomly equivalent
forms (Cronbach, 2004, p. 204). Cronbach derived coefficient o for randomly parallel
test forms; others (Guttman, 1945; Kuder & Richardson, 1937; Lord & Novick, 1968,
pp- 89-90; Novick & Lewis, 1967) derived the same results for classically parallel forms,
showing that coefficient « is a lowcr bound for classical reliability if the assumption of
linearly uncorrelated errors is met.? Unless all of the items within the domain are paralle]
to each other, the X scores based on different sets of items drawn from the domain are
unlikely to be parallel. The correlation between random forms is necessarily a lower
bound to the correlation between parallel forms. Thus, if one wishes to estimate the
correlation between random forms, instead of the correlation between parallel test
scores, coefficient a is not an undcrcst1matc (Cronbach, 2004, p. 400). However, it
does not meet the classical definition of reliability.

At the extreme, each item can be considered a separate part of the test and coefficient
a can be calculated based on the item scores. This is the most frequent way coefficient
alpha is calculated. If the items are dichotomously scored, this reduces to the Kuder—
Richardson formula 20 (KR-20, Kuder & Richardson, 1937). KR-20=

k
o PX-R(-P)
i=1
k-1 62(X)
are of equal difficulty, KR-20 is equivalent to KR -21 =

, where P; is the proportion correct for item 7. If all items

k o*(X)-kP.(1-P.)
k-1 o2(X)
P, is the mean proportion correct. If KR-21 is applied when the items are not of equal
difficulty, the corresponding SEM will contain the variance in item difficulty. Thus
KR-21 < KR-20,

Recall that coefficient alpha is a lower-bound estimate of reliability, equaling reliabil-
ity only if the subdivisions of the test are at least essentially T-equivalent. For long tests
divided into just two or three parts, the scores may approach essential t-equivalence. If
there is a detailed test blueprint and the empirical characteristics of the items have been
estimated, the test developer could split the items such that each subdivision of the test
covers the blueprint proportionally and the parts have similar difficulty and variance.
This seems far less plausible when the parts used in coefficient alpha are individual items.
It becomes yet less plausible when the items are dichotomous. It is unlikely that
dichotomous items could be essentially T-equivalent unless they have the same mean,
due to the relationship between mean and variance for dichotomous items. As Feldt
(2002, p. 40) noted, if dichotomous items with different means were essentially T-equiv-
alent, all of the difference in variance would have to be due to differences in error
variance. If this were the case, the covariances between items, which are not affected

, Where

3 Ifthe errors are correlated, such as would be likely when several items refer to the same scenario, coefficient ,
and other estimates of reliability, may overestimate the correlation between parallel forms.

4 Strictly speaking, the sample estimate of the covariance between random forms based on coefficient alpha,
8(X1X;) = a&*(X), is an unbiased estimate, but o= §(X; X;)/6% (X) is biased for finite samples because the ratio
of unbiased estimates is not in general unbiased except under select conditions. This bias is generally small.
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by error variance, would be equal for all item pairs, which Feldt notes is contradicted by
clear evidence of heterogeneity in item covariances within most tests.

Sometimes researchers explore whether dichotomous items are essentially
t-equivalent at the latent level instead of the observed level. Conceptually, this means
that there is a latent continuous score x* underlying the observed score x for an item. If
x* exceeds a threshold, which may vary by item, x = 1. Otherwise, x=0. The non-linear
relationship between x and x* is typically modeled with either a probit or a logistic
model. Because the x"s are continuous, the squared correlation between x" and T is
not dependent on the mean of x* and the latent x*s may be essentially T-equivalent
without necessarily being parallel. This model can be tested through the methods of
confirmatory factor analysis (CFA). But even if the latent x"s are essentially T-equivalent,
it does not change the fact that the observed dichotomous item scores (the xs) cannot be
essentially T-equivalent unless they have the same mean. Coefficient a is estimated from
the s, not the x*’s so it will be a lower-bound estimate of reliability unless the items are
classically parallel. To provide an example of this concept, data were simulated for two
test forms, each with 10 items (see Appendix, Code 1, for simulation details). On each
test form, each x* was correlated 0.6 with T and had a variance of 1, with means ranging
from ~1.35 to 1.35. Thus, the x"s were t-equivalent. For convenience, each x* was nor-
mally distributed, although this is not an assumption of CTT. To approach the asymp-
totic true values, 10,000,000 examinees were simulated. The correlation between the
parallel scores X} and X3, the sums of the 10 x*s on each form, was 0.84909. Coefficient
alpha was 0.849125 for X}; the estimates differed at the fifth decimal because the sam-
ples were finite. The x*s were -equivalent within each test form, so coeflicient a was an
accurate estimation of reliability.

Next, the x*s were dichotomized. Any value of x* < 0.5 was coded 0, and any value of
x* > = 0.5 was coded 1. Because the x"s had different means (they were t-equivalent,
not parallel), this was equivalent to using a different threshold for each item. The result-
ing observed xs were no longer essentially T-equivalent, even though the underlying x*s
were. The proportion correct on each item varied approximately from 0.20 to 0.97. The
new X; and X,, now integer values between 0 and 10, were still parallel. The correlation
between the parallel measurements X; and X, was 0.68340. But coefficient o was
slightly lower, at 0.665041 for X; and 0.665003 for X;,. Thus, if one is estimating
the reliability of observed scores, it is the parallelness, or lack thereof, of the observed
item scores, not the latent scores underlying the items, which determines whether coef-
ficient alpha is an underestimate of reliability.

The extent to which coefficient o underestimates reliability due to using non-parallel
items may be fairly small, as in the example before. For another example, Feldt (2002)
estimated the bias in coefficient o, compared to a reliability formula derived for conge-
neric scores, for varying configurations of a test composed of 50 dichotomous items.
Even the most extreme differences in true-score variance, not intended to be realistic,
yielded a bias of -0.027. However, when the part tests were not items but subtests of
different lengths, or raters using a rating scale, the bias was non-negligible. Similarly,
very extreme violations of essential T-equivalence for continuous item scores have
demonstrated considerable negative bias on coefficient o (Komaroff, 1997; Zimmer-
man et al., 1993).

Another part-test estimate of reliability is McDonald’s (1999) o, estimated through
CFA. For o, the part tests are only assumed to be congeneric, not necessarily essentially
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unstandardized loading of item 7 or subtest i and ¥? is the error variance for item i.
If the items are essentially T-equivalent, @ will equal coefficient ; otherwise, a is a lower

bound to @ (assuming errors are conditionally independent).
Returning to our simulated dataset with t-equivalent continuous item, each item had

2
a loading of .6 and an error variance of .64; thus = (10(6)) =.849057
(10(.6))* +10(.64) ’
which closely approximates both the empirical correlation between the parallel forms
and the empirical estimate of coefficient a. For the dichotomized items, the CFA must
be run using a linear model, ignoring the fact that the items are dichotomous (for
example MPlus code, please see the Appendix, Code 2). If the nonlinear model, which
would be correct for other purposes, is run, the resulting @ will be an estimate of the
reliability of the x"s, not the observed item scores (see Appendix, Code 3, for example
MPlus code). With the simulated data, using the nonlinear model resulted in loadings
ranging from 0.599 to 0.601 and corresponding error variances from 0.359 to 0.361,
producing the same o as the continuous items, which is clearly an overestimate of the
correlation of .683 between the parallel forms composed of dichotomous items. But
for the linear model, the loadings ranged from .257 to .481 (unstandardized loadings
ranged from .045 to .240). These loadings are smaller, reflecting the increased error
due to dichotomizing the items, and more variable, reflecting the loss of essential
t-equivalence. The estimated o = .676, slightly larger than coefficient a.

t-equivalent. For tests with a single factor, &= ( , where A; is the

Permissible replications ‘T, was defined earlier as e(X;), where each X is a parallel
measurement, and reliability was defined as p(XX'), where X and X' are classically
parallel. However, a researcher may actually be more interested in the correlation
between test scores that are NOT strictly parallel.

The correlation between truly paralle] measurements taken in such a way that the per-
son’s true score does not change between them is often called the coefficient of preci-
sion... For this coefficient, the only source contributing to error variance is the
unreliability or imprecision of the measurement procedure. This is the variance ratio that
would apply if a measurement were taken twice and if no practice, fatigue, memory, or
other factor affected repeated measurement. In most practical situations, other sources of
error variation affect the reliability of measurement, and hence the coefficient of precision
is not the appropriate measure of reliability. However, this coefficient can be thought of
as representing the extent to which test unreliability is due solely to inadequacies of the
test form and testing procedure, rather than the extent to which it is due to changes in

people over time and lack of equivalence of nearly parallel forms. (Lord & Novick,
1968, p. 134)

Cronbach (1951) argued that “It is very doubtful if testers have any practical need for a
coefficient of precision” (p. 307). Cronbach focused instead on test forms composed of
randomly selected items drawn from a hypothetical domain of items; he termed
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measurements based on such test forms to be randomly parallel. Cronbach and collea-
gues (Cronbach, Rajaratnam, & Gleser, 1963) soon expanded this concept to include
other random differences in the measurements, not just random selection of items. They
developed generalizability theory methods to assess the contribution of different meas-
urement facets, such as items, time, or observers.

Lord and Novick (1968, Ch. 8) termed the traditional true score the specific true
score, and termed the expectation over randomly equivalent measurements the generic
true score. They labeled the randomly equivalent measurements nominally parallel, and
labeled the correlation between X and the generic true score the generic reliability. For
the generic true score, one must define a permissible replication® (allowable observa-
tion). The definition of a replication of X defines how broad T is. For example, Thorn-
dike (1951, p. 568) provided a table of factors that might impact score variance. He
discussed how decisions about which factors contribute to true score and which to error
variance impact data collection designs.

Consider the variable of human weight. To get truly parallel measurements, we would
measure each person’s weight on the same scale twice, without allowing restroom
breaks or food /water ingestion; this would be a permissible replication. The correlation
between these parallel measurements would be the classical reliability estimate, the coef-
ficient of precision. This would be a useful summary of the consistency of the scale. But
suppose a group of researchers wanted to get an estimate of each person’s weight prior
to a study of a weight-loss program. It would be more useful for this purpose to weigh
cach person several times throughout the day and average the results; the generic true
score estimated here is the average weight across the day. Permissible replications are
defined to require the same clothing and the same scale, but allow for fluctuations
due to hydration and food intake. Each person would have a distribution of errors that
would combine these fluctuations with inconsistency in the scale. The average error var-
iance, together with the variance in weight over the group of study participants, could be
used to estimate a reliability-like coefficient. This would clearly be a lower bound to the
classical reliability because the error term is larger, just as coefficient alpha is a lower
bound because of the additional error variance due to randomly sampling items. Per-
missible replications might also be broadened to include the use of different scales; this
would again broaden the scope of the generic true score to include the mean across dif-
ferent scales as well as different weighing occasions. The error term expands to include
the variance in the scales’ accuracies as well as their consistencies and the humans’
weight consistencies.

The strict definition of reliability in CTT defines X and X' as the same or parallel mea-
sures, which implies that nothing about the examinees or the tests changes between the
measurements. Cronbach, as described, preferred to allow different test forms com-
posed of random selections of items to be permissible replications. In many cases for
achievement tests, we also want to generalize over occasions where the examinee’s con-
tent knowledge has not changed, but concentration, motivation, and physical comfort
may have changed slightly. These latter facets are allowed to vary randomly and the
generic true score is the expected value of the measurements. For a psychological trait
that is purported to be stable over lengthy time periods, observations many years apart
would be permissible replications. The generic T would then be defined as the expected

5 Lord & Novick reserved the use of replication for parallel measurements. I am using it more broadly here.
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value over many years, perhaps a lifetime. Any time-related variances would become part
of the error. Thus, in the generic conception of T, any facet that varies randomly is error.
This broader definition of error yields lower reliability estimates - hence coefficient a as a
lower bound to classical reliability.

Sometimes a characteristic may vary across measurements but consistently affect the
scores of all examinees in the same way. This is sometimes called systematic error, a bit of
a misnomer because CTT defines error as random. These types of errors are not detect-
able by correlational methods. If one test form is more difficult than the other for all
examinees to the same extent, it will not change the correlation between the two scores.
The variance in X is not changed by subtracting a constant from each score. If we were
able to estimate each student’s individual error variance from repeated testings, and
some test forms were more difficult or easy, this error would be part of each student’s
error variance (called the absolute error variance in g theory). But when we estimate the
error variance by substituting p(XX') and 62(X) into Equation 2.1, the systematic dif-
ficulty effect is not reflected in the error because it has no effect on either the correlation
or the observed score variance. Similarly, any characteristics of the examinee that a
researcher wishes to consider error must randomly vary across measurements or they
become part of the true score. For example, if there is only one testing occasion and
an examinee’s motivation remains consistently low throughout the test, low motivation
will be part of that examinee’s true score, not error. As Thorndike (1951, p. 566) noted,
all systematic factors are part of the true score.

In summary, before gathering data to estimate reliability, researchers must clarify
which facets of the testing situation they consider part of the true score and which they
consider error. The testing conditions must be designed so that facets considered error
vary. The broader the pool of permissible replications, the more the generic reliability
will underestimate the classical reliability. Thus, the generic reliability is a lower bound
to the classical reliability. However, a broader definition of permissible replications may

better match the score user’s intentions than strictly parallel replications, even if
achievable, would.

Additional considerations in reliability and the SEM

Increasing test length will generally increase the reliability of the test. Assuming that the
additional test section will be parallel to the existing test, the error variance will increase
linearly but the true-score variance will increase geometrically: 6*(Ex) = ko*(Ey) and
0*(Tx) = k®0?(Ty), where Y is the original form, X is the lengthened or shortened form,
and k is the multiplicative factor. Based on this relationship, the Spearman-Brown
prophecy formula can be used to estimate the reliability of the lengthened test:
p(XX') = kp(YY')
1+(k-1)p(YY'")
returns. For example, if a test with 20 items has a reliability of .8, decreasing the test
to 10 items decreases the reliability to .67, but adding 10 items to a test length of 20 only
increases the reliability from .80 to .86.
When a test is administered to a group with more heterogeneous scores, the reliability
should increase but the SEM should remain the same®. The reliability in the new group

Notice how increasing the test length has diminishing

S If the SEM varies with the true score, as it would if the test score were the sum of dichotomous item scores,
the SEM will likely vary by group if one group has mostly extreme scores. CTT does not account for this.
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can be estimated by sctting the SEMs of the two groups equal, resulting in:

P =1- o—lx—(l—;zfﬁ)-, where pa is the reliability in the new group, pyy is the reliability
N
in the existing group, and o% and % are the variances in the new and old groups.
Validity (defined narrowly as the correlation between X and an external score Y) is
limited by the reliability of the measures; the validity coefficient is attenuated by
measurement error. The correction for attenuation can be used to estimate what the
correlation between two measures would be if there were no measurement error, the

latent correlation. p(TxTy) = —ﬂ— Note that for this formula, the reliability

Vp(XX)p(YY')
estimates should be the classical reliability estimate, the correlation between truly
parallel measures. If one substitutes the correlation between randomly parallel measures,
such as coefficient alpha or the correlation between alternate forms that are not perfectly
parallel, one will likely overcorrect to the extent that the reliability is underestimated

(Lord & Novick, 1968, p. 138).

Item-level indices

Even though CTT is fundamentally a theory about test scores, we have seen that item
scores play a role in the most commonly used estimates of reliability, coefficient o, )»?,
and @, if the part tests used in the computations are individual items. The item scores obvi-
ously play a role in the total score X and its mean, variance, and error variance. Indices of
item discrimination and difficulty are typically used to decide which items are useful for
measurement and which should be discarded and replaced. Item difficulty is typically
indexed by the mean score on the item. For dichotomous items, this is P, the proportion
of examinees who answered the item correctly or endorsed the item. Sometimes this is
called the P-value, although that term is easily confused with the p-value from statistical
significance testing and will be avoided here. Pis thus an index of item easiness or itfm
facility, but it is historically called item difficulty. Pis obviously dependent on the ability
distribution. Because Pis limited to the range 0-1, estimates of P from samples of exam-
inees with different ability distributions will have a nonlinear relationship. To make the rela-
tionship linear, sometimes a continuous latent score X" is conceptualized as underlying the
observed score x. The threshold above which x = 1 is used as the index of item difficulty.
The classical method of estimating the threshold requires assuming that x* is normally dis-
tributed and there is no correct guessing. Note that this is not generally an assumption of
CTT, but is an additional assumption made specifically for the purpose of estimating the
threshold. The threshold is defined as the z-score corresponding to P. Angoff and Ford
(1973) multiplied this value by 4 and added 13, labeling the resulting index A. '
Generically, item discrimination is any index of how well the item separates examinees
with high values of X from examinees with low values of X. Items with high discrimi-
nation will add to the reliability of X. The most common index of item discrimination
is the correlation between the item score x; and the total score X. If the item is dichot-
omous, this is termed the point-biserial correlation. It can be calculated either with the
usual Pearson correlation formula or equivalently through a shortcut formula specifi-
cally for dichotomous items. Usually, the point-biserial correlation for item 7 is
computed without including x; in X, termed the corrected item—total correlation.
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The point-biserial correlation is impacted by P. Because the variance for a dichoto-
mous item = 1 - P), items with P near 0.5 have the greatest potential for high
point-biserial correlations. P depends on the ability distribution, so the point-biserial
correlation varies across samples with differing ability distributions. In contrast, the bise-
rial correlation does not depend on P pyinr= L)’f‘)ppm-m_ piseriats Where Y is the
Y ordinate of the standard normal function at the z-score corresponding to the propor-
tion correct. The biserial correlation again invokes the concept of the latent item score
x*; it is an estimate of the correlation between x; and X. It is greater than the point-
biserial correlation between x; and X, especially for items with very high or very low
means. As was true of the estimate of the item threshold, the biserial correlation requires
the additional assumption of normality of x{ and no correct guessing,.

The biserial correlation is useful for comparing estimates from samples that differ in
mean ability but not in variance. The point-biserial correlation is applicable for choosing
test items if the mean ability of future testing samples will be roughly comparable to the
current sample. If an item is very easy for a group of examinees, it cannot discriminate
well in that group, regardless of how well the biserial indicates it would discriminate if it
had not been dichotomized.

As an aside while discussing x*, another related index is the tetrachoric correlation
between pairs of dichotomous items. The tetrachoric correlation is the estimate of
the correlation between the x™’s for items 7 and j, as opposed to the phi correlation,
which is the Pearson correlation between the observed xs. The tetrachoric correlation
will be greater than the phi correlation, just as the biserial is greater than the point-bise-
rial. There is no simple equation for estimating tetrachoric correlations (see Kirk, 1973
for one method). An additional note is that the models underlying the computation of
thresholds and biserial and tetrachoric correlations generally do not take into account
correct guessing (Lord & Novick, 1968, p. 153). Carroll (1945, 1987) developed
methods of correcting Pearson, tetrachoric, and biserial correlations for guessing.

Another somewhat common index of item discrimination is the difference in P for the
top 27% of examinees and the bottom 27% of examinees (Kelley, 1939). Although this
index loses information through artificially categorizing X, it may be easier for teachers
and content panels to understand.

Item discrimination can be calculated for each response option. It should be positive
for the correct option, and negative for useful distractors. Negative values indicate that
the probability of choosing the option decreases as X increases.

In summary, items that are more discriminating increase the reliability of the scores.
Conditional on the latent relationship with the true score, middle-difficulty items will
have higher observed discrimination indices, such as the point-biserial correlation.

Strong True-Score Theory

Strong true-score theory (STT) provides an alternative to CTT. The strong in STT refers
to the assumptions, which are stronger than those of CTT. In STT, one has to assume a
given distribution for the error variance, and often for the true-score variance as well.
Here, we will limit the discussion of STT to contexts where X is the sum of the number
of correct dichotomous items. STT, in some sense, is an item-level theory. In contrast,
the score X in CTT is simply a score. It does not have to be the sum of item scores.
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Following Lord and Novick’s (1968, Ch. 23) notation, 1 will call the true score §
instead of T. {p=&i(Xpi), where Xpi represents person p’s score on item 4. { may be
estimated as X/1, where I is the number of items on a test form. In CTT, the hypothet-
ical replications of X for person p are assumed to be parallel. In the discussion of
coefficient o, the concept of randomly equivalent scores (Lord & Novick used the term
nominally parallel scores) was briefly introduced. STT is applicable to randomly
equivalent scores as well as classically parallel scores. The items for a test form are viewed
as random draws from a hypothetical domain of items. If all of the items in the domain
are equally difficult and have the same linear relationship with T, the resulting scores are
classically parallel. In contrast to the Tp in CTT, & is person p’s expected value over the
domain, not just the set of items on one test form. { is often called the domain score, or
the universe score in generalizability theory. Lord and Novick (1968) called € the
generic true score, to contrast to the specific true score T.

¢ is continuous but limited to the range of 0-1. One of the strong assumptions in STT
is that, across people, § follows a specific distribution, typically either the two-parameter
beta or the four-parameter beta.” The errors are assumed to have a binomial distribu-
tion. X, = pl + Ep, s0 the observed scores are said to have a beta-binomial distribution.
Using the binomial distribution, the SEM is calculated as 6(Ep) = z(—pg(flxp—)-,
where k is the number of items. The binomial distribution produces heteroscedastic
error variance. The SEM will be smaller for more extreme scores, and higher for X/k
near 0.5. Estimating binomial standard errors allows test developers to meet Standard
2.14 (AERA/APA/N CME, 1999), which suggests reporting the SEM at various levels
on the score scale. The 62(E) could be averaged across examinees and is equivalent to

the 6%(E) based on KR-21. The average error variance can be combined with & (X) fora
reliability estimate. When all items are of equal difficulty, this index will be equivalent to
the correlation between parallel forms. Ifthe items are not equally difficult, the binomial
error variance contains additional variance due to differences in item difficulty. The
resulting reliability-like index is an estimate of p?(X¢) where each examinee is randomly
assigned a different form and the scores are not equated. It will thus tend to underes-
timate the correlation that would be observed if all examinees took the same sct of
randomly selected items. For the purpose of estimating this index, o*(X) should be
estimated from a sample in which examinees did take different sets of items. If 6*(X)
is estimated based on a sample that took the same set of items, and the items differ
in difficulty, it will not contain variance due to item sampling (Feldt, 1984), further
decreasing the estimated ratio of 02(——%;——;)2(13) because 62(E) does contain variance
due to item sampling. Or equivalently, one could estimate what 6*(X) would be if each
cxarrzxincc took a different sample of items by adding the variance in item difficulty
to 6°(X).

For the {s, the two-parameter beta distribution ranges from O to 1. The
four-parameter beta distribution has a lower limit>0 and an upper limit < 1. The

7 The beta distribution is typical for T when X is the sum of dichotomous scores. A Poisson distribution may be
assumed for X when X is the number of words read correctly in a passage {Lord & Novick, 1968, Ch.21;Rasch
1960,/1980). Or for continuous scores, both errors and true scores might be assumed to be normally
distributed.
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four-parameter beta might better model scores where there is some correct guessing,
such as multiple-choice item scores. However, estimating the parameters for the
four-parameter beta from the observed data is considerably more complicated than
estimating the parameters for the two-parameter beta (see Hanson, 1991; Lord,
1965 for details on the four-parameter beta). The parameters for the two-parameter
beta distribution, often simply called the beta distribution without the qualifier
two-parameter, can be estimated as:

. 1 \. 12 =« I . .
= (— 1+ KR21) fix, p=-0a+ o -1, where KRy; is the estimate of reliability

using KRy1, fix is the estimated mean score, and I is the number of items on the test
form (Huyhn, 1979).

Combining the beta distribution for { and the binomial distribution for errors, one
can estimate the X distribution. The resulting observed score distribution is applicable
when either all items are of equal difficulty or ecach examinee responds to a different
random subset of the items in the domain. To predict the X distribution for a specific
test form with items of varying difficulty, a better estimate could be obtained from the
compound binomial using subsets of items with similar difficulty (Lord & Novick,
1968, Ch. 23, section 10). Because the ¢ distribution is continuous, it must be
approximated at fixed points. At each point g on the § distribution, the distribution
of X is binomial. The X distribution at g is then weighted by the density of § at 4, then
summed across the points. This approximates integrating the conditional X distribution
over the ¢ distribution. An example is shown in Figure 2.1. There were 10 items on the
test, and alpha =2.87, beta=1.41 for the ¢ distribution. Because the two-parameter
beta-binomial distribution is equivalent to the negative hypergeometric distribution
(Keats & Lord, 1962), the X distribution in this example could have been computed
more directly, and without the need for approximating at discrete points on the
distribution, but the method described generalizes to any § distribution. This method
could also be used to predict reliability for different populations by altering the density
of ¢ and re-weighting the distributions of X and E correspondingly.
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Figure 2.1 Density of latent (¢) and observed (X) scores.
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Generalizability Theory

Generalizability theory (g theory) is an extension of CTT that allows for multiple facets
of measurement. G theory is based on randomly equivalent (nominally parallel)
measurements, not classically parallel measurements. As discussed earlier, often
researchers want to include variance due to random differences in test forms or random
differences in examinee factors on different days as error. Although the classical defini-
tion of parallel measurements does not allow for these differences, Cronbach’s randomly
parallel measurements or Lord and Novick’s generic true score do. In these conceptua-
lizations, error variance due to test form can be estimated by administering two test
forms, or error variance due to occasion test-retest can be estimated by administering
the same test twice. The error variance could include both if the test-retest data were
collected with alternate test forms, but the two sources of error would be confounded.
G theory allows for the separation of different sources of error, called facets. For
example, the design might include 20 test items given on two occasions. The SEM
would include error due to items and error due to occasion, and would include a
separate estimate of each. Similarly, a design might include two raters scoring three writ-
ing samples for each examinee, and the SEM would include separate estimates of the
error due to each facet. As in STT, the unit of analysis is x; (a score from one item
on one occasion, for example) instead of the total score X, and the x;, are often assumed
to be randomly drawn from a larger domain (called the universe in g theory) of items,
occasions, raters, and so on. However, the mathematical assumptions are the same as for
CTT and only a single SEM is estimated for all persons.

After the error variance is estimated in g theory, reliability-like coefficients can be
calculated, although Cronbach (2004) noted that often the SEM is more informative.
The reliability-like indices are denoted as the G-coefficient and ®-coefficient. The
G-coefficient is used for comparing examinees who were scored based on the same
random sample of items, raters, or whatever facets were included in the study. Anything
about the sample of items (or raters, etc.) that impacts all examinees equally is not part of
the error variance. In g theory, these are the main effects of the facet. Only the
interaction between the examinee and the facet are considered error, called relative
error because it is used when comparing examinees to other examinees who were
exposed to the same random levels of the facets. This is similar to estimating reliability
by correlations between two measurements; factors that add a constant to all examinee’s
scores do not impact the correlation or the observed score variance and thus are missing
from the error variance if it is estimated as a function of the correlation and observed
score variance. If there is only one facet, the G-coefficient is equivalent to coefficient
alpha and the interaction between examinee and item is equivalent to the SEM
estimated from Equation 2.1. Thus, the G-coefficient would be a lower bound to
the correlation between parallel forms.® The G-coefficient is considered a reliability-like
index, not an estimate of classical reliability but on a similar metric.

The ®-coefficient is an alternative reliability-like index. The ®-coeflicient is useful for
comparing examinees who were given different random draws of items or raters. The
error variance used in calculating phi is called the absolute error variance. This error

8 More precisely, it is also a lower-bound to the correlation between random forms because the ratio of the
estimates is a biased estimate of the ratio unless certain conditions hold (Cronbach etal., 1963). But this bias is
generally quite small.
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variance, unlike the error variance for the G-coefficient or the error variance calculated
in CTT by Equation 2.1, includes error variance systematically due to the difficulty of
the items or harshness of the raters (main effects of the facets). If everyone received the
same random set of items and raters, as often happens because the universe of items and
raters is hypothetical, these main effects would add a constant to everyone’s score. But if
different examinees receive different random sets, as would occur if items were drawn
from an itembank or subsets of raters from a pool were assigned to different examinees,
these main effects should be counted as error because they randomly affect examinee’s
scores differentially. They would also be considered error for an individual, assuming the
goal is to estimate the sampling distribution of the examinee’s scores across random sets
of measurement conditions, not just parallel forms. If the only facet in the design is
items, and those items are dichotomous, the absolute error variance is equal to the
average binomial error variance calculated in STT. Despite this equivalency, g theory
was not derived for dichotomous scores, not does it require any assumptions about
the distributions of true scores or errors.

This brief description of g theory was only enough to place it in the perspective of
CTT. For an introduction to g theory, readers should consider Meyer (2010), or
Shavelson and Webb (1991), followed by more advanced topics in Brennan (2001).

IRT

In contrast to CTT, IRT is an item-level theory. In IRT, a latent trait or ability or
proficiency, symbolized 6, is posited to underlie the observed responses. The term
latent, like the term true in true score, is not meant to imply an inner ability that would
be elicited under ideal conditions. Latent simply means that we cannot measure 9
directly, the way we can count the number of correct responses. IRT models assume
a specific relationship between 6 and the observed responses. IRT requires stronger
assumptions about the response process and the error distribution.

Assumptions

1 Correct dimensionality: The item responses are assumed to be a function of the
dimensions specified in the model. The most commonly used IRT models are uni-
dimensional, so this assumption is often referred to as unidimensionality. Concep-
tually, the trait measured by the test may be a combination of several abilities,
motivation, concentration, anxiety, and so on. If the same combination applies to
every item, unidimensionality will hold. Unidimensionality can be assessed by many
methods (see Hattie, 1984; Tate, 2003, for an overview).

2 Local independence: After controlling for the 8 (or 8s if the test is multidimensional)
measured by the test, item responses should be locally independent. Local denotes
conditional on 6, or controlling for 8. Globally (not conditional on 8), the item
responses should not be independent or they would not be measuring anything
in common; it is only locally that we assume the responses are independent. Strict
local independence holds for the entire response string. When checking the assump-
tion, however, researchers often test for local independence between pairs of items.
This is termed weak local independence. See Kim, De Ayala, Ferdous, and Nering
(2011) or Chen and Thissen (1997) for descriptions of tests for local independence.
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3 The form of the model is correctly specified. Sometimes this assumption is stated as
multiple assumptions, depending on the model selected. For example, some of the
models described next assume there is no correct guessing. The one-parameter
model assumes that all items are equally discriminating. Most models assume that
the probability of scoring in the highest category increases as theta increases. All
models assume that the relationship between theta and the item response is a con-
tinuous, defined function, often with either a logistic form or normal ogive form,
which implies the errors are logistically or normally distributed. Assumptions about
model form are generally checked by estimating the item parameters and checking
the fit of the data to the model. For discussions of item fit, see Glas and Sudrez Fal-
c6n (2003); Li and Wells (2006); Liang and Wells (2009); Orlando and Thissen
(2000; 2003); Sinharay and Lu (2008); Stone (2000; 2003); and Wells and Bolt
(2008). For discussions of model fit, see Kang and Cohen (2007); Kang, Cohen,
and Sung (2009); Maydeu-Olivares, Cai, and Herndndez (2011); and Whittaker,
Chang, and Dodd (2012). Also see Chapters 8 and 9 of this volume.

Models

IRT models can be distinguished by whether they are unidimensional /multidimen-
sional or dichotomous/polytomous. Dichotomous models are for items with only
two response categories, such as right/wrong or agree /disagree, and polytomous mod-
els are for items with more than two response categories, such as an item scored with
partial credit or a Likert type item. Here I will only describe dichotomous unidimen-
sional models. Additional models are covered in Chapters 15 of Volume 1 and 16 of
Volume 2. IRT models can be specified in logistic or normal (probit) forms. Normal
models are mathematically more difficult to work with because calculating the response
probabilities requires integration over the normal distribution. Logistic models are thus
more commonly used. Sometimes a constant of 1.7 is placed in the logistic model so that
the parameters will be nearly equivalent to those of the normal model. This is called the
logistic model on a normal metric, and is the form I will use here.

The three-parameter logistic (3PL) model uses three parameters to model item
responses.

cl.7a;(6—bi)

P(6) =ci +(1-c;) 1+ el 7a(0-b)

(2.2)

where P(6) is the probability of correct response or item endorsement for an examinee
with ability of 6, 4; is the item discrimination, 4 is the item difficulty, and ¢ is the lower
asymptote. An example of two 3PL functons is shown in Figure 2.2. The higher the
value of the a-parameter, the more rapidly response probabilities increase as a function
of theta. Thus, the 4-parameter describes how well the item discriminates among theta
levels. The higher the -parameter, the less likely a respondent is to score 1. Unlike the
CTT item difficulty index, a higher #indicates a more difficult item. The ¢-parameterisa
lower asymptote indicating the probability of correct response for an examinee with very
low 8. It is sometimes called the guessing parameter because one way that examinees of
very low 8 may choose the correct response is by guessing. It is also possible that some
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Figure 2.2 3PL items.

proportion of examinees know the information assessed by the item even if they are gen-
erally low on the 6 measured by the test as a whole.

The phrase response probability, as used in this context, can be a bit ambiguous. Wai-
ner, Bradlow, and Wang (2007, pp. 25-27) pointed out that, for most tests, it makes
little sense to literally think about the response probability as the probability that exam-
inee jwill get item ¢ correct. For example, based on the item parameters and 6}, P(x; = 1)
might equal 0.5. But if we were to repeatedly test examinee jwith this same item (with a
memory erase, as in CTT), the examinee would likely select the same response very fre-
quently, either because he knows the right answer or is consistently drawn to the same
wrong answer. Instead, the response probability can be conceptualized in terms of a
subpopulation of examinees with the same 8 value. The response probability represents
the probability that a randomly selected examinee from that subpopulation would
answer the item correctly. Or it could be conceptualized in terms of a hypothetical pop-
ulation of items with the same parameters where the response probability represents the
probability that the examinee would respond correctly to a randomly selected item with
these parameters.

In the 2PL model, the c-parameter is fixed to zero and thus is removed from the
model. In the 1PL model, a single #-parameter is estimated for all items and only
the 4-parameter differs. The 1PL model is equivalent to the Rasch model. The Rasch
model was originally specified in terms of log-odds, not probabilities. It is now often
specified similarly to the 1PL model, but without the 1.7 and using different symbols
for the item difficulty and person ability /trait. The way the model is identified is also
typically different in IRT and Rasch models. Two constraints need to be applied to
fix the indeterminancy in the metric, one to center the scale and another to set the scale
of the units. In IRT, the most common choice is to set the mean of the 8s to 0 and the
standard deviation of the s to 1. Typically, Rasch modelers set the 2-parameter to one,
which frees the variance of 6, and the mean of the &s to 0, which frees the mean of 8. So
the more discriminating the test, in terms of the IRT a-parameters, the greater the var-
iance of the Rasch abilities. This illustrates that, like in CTT, the more heterogeneous
the examinees’ abilities are, the better we can discriminate among them.
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If the model fits the data in all populations (an important caveat), the IRT item para-
meters are population invariant; they are the same in all populations. Aside from sam-
pling error, the estimates of the parameters will vary by a linear transformation due to the
indeterminacy in the metric. When the ability distributions of the populations differ, this
cannot be true of the CTT item difficulty P; there is a nonlinear relationship between the
item difficulty in different ability distributions. The point-biserial correlation, as dis-
cussed, depends on the item difficulty and also is not population invariant. However,
if the ability distributions are not too discrepant, the relationships between estimates
in different populations are often nearly linear (Fan, 1998). Additionally, if P is trans-
formed to the threshold on the cumulative normal distribution corresponding to P,
and the point-biserial correlation is transformed to the biserial correlation, invariance
can be obtained if the additional assumptions of no correct guessing and normality
of the underlying data are met.

The likelihood function

The likelihood function is an important concept in maximum-likelihood (ML) estima-
tion. If the assumption of local independence is met, the likelihood of any observed
response string, say 11110111001111000001000, is the product of the likelihoods
of the individual item responses. For dichotomous items, the likelihood of an observed
response of 1 is P(8) and the probability of a response of 0 is 1 - P(8). If the item para-
meters are known, or treated as known, the likelihood is a function of 8. As long as there
is at least one 0 and one 1 in the response string, the resulting function will have a max-
imum, and the value of 8 where that maximum occurs is the ML estimate of 8.
Figure 2.3 is an example of a likelihood function. Typically, the maximum is found using
the Newton—-Raphson method.

Sometimes information about the population distribution is used in estimating 6,
employing Bayesian principles. The posterior distribution is the likelihood function
multiplied by a prior distribution specifying the population density. The ML estimate
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Figure 2.3 A likelihood function that reaches its maximum just above 6 =1.
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based on the posterior distribution is called the modal-a-posterior (MAT) estimate. 6
could instead be estimated as the mean, not the maximum of the posterior distribution,
an estimate termed the expected-a-posterior (EAP, with the expected meaning
expected value).

To estimate the item parameters, the P(8) or 1 - P(8) in the likelihood is multiplied
across people within an jtem. In most contexts, the individual 6s are not known, and the
likelihood is integrated across the 0 distribution to reduce the dimensionality. This proc-
ess is called maximum marginal likelihood (MML, also written as marginal maximum
likelihood). The integration is approximated by the method of quadratures. The 6 dis-
tribution may be assumed normal, or the shape of the distribution may be estimated as
part of the MML process.

Item information and test information

Reliability and the SEM are major concepts in IRT, just as they are in CTT. Information
underlies both concepts. Information is a statistical term, not unique to measurement.
Information is the inverse of the asymptotic variance of a maximum-likelihood estimate.
Thus, not only  but also each of the item parameters has an estimate of information and
error variance. When the term information is used without a qualifier, it typically refers

to the information for 8. The square root of the inverse of information (4 /I(_G)) is the

standard error of the parameter estimate. The standard error of 8 is the SEM, although
some prefer to reserve the term SEM for observed scores. Because information is a func-
tion, not a single value, the standard error of § is also a function. An example is shown in
Figure 2.4. In typical test forms, there is more information for middle values of 6, so the
standard error is lower for these values. This contrasts with STT, where the standard
errors are highér for those with observed scores nearer 50%. This difference can be
explained by the difference in metrics. For examinees with very high or very low
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0s, it can be difficult to estimate exactly how high or low 0 is. But these examinees
would consistently have observed scores near 100% or 0% on randomly selected test
forms.

The information for 8 can be decomposed into a series of item information func-
tions. A useful property is that the item information functions sum to the test infor-
mation function. Thus, the effect of adding or deleting an item or set of items can be
easily calculated. In CTT, adding or deleting items changes T, so reliability and the
SEM need to be re-calculated. If the IRT model fits, adding or deleting an item does
not change the information function for any other items.” For dichotomous items,
item information peaks at the difficulty value if the data follow a 1PL or 2PL model
and somewhat above the difficulty value if the data follow a 3PL model. When item
discrimination is high, the information is high at its peak but lower at other points.
When item discrimination is low, information is spread over a broader theta range
but is never very high. The higher the ¢-parameter, the lower the information, espe-
cially in the lower range of 6.

Items can be selected more precisely to provide information in specified ranges.
Tests often are designed to have more information where the examinees are concen-
trated. If the intended examinee population matches the population used to center the
metric, typically items would be chosen to provide the most information over a range
between -2 and 2. If the test will be used on a more able group than the group used to
center the metric, perhaps to select scholarship or award winners, more difficult items
would be selected to provide more information in the top range. If the test has a
passing standard, items might be selected to provide peak information at the cutscore,
regardless of the 8 distribution. Thus, the process of selecting items to fit an informa-
tion function can be more systematic than the CTT method of selecting the more
discriminating (usually middle-difficulty) items. Additionally, even if items have never
been administered together on the same test form, once the items have been scaled to
the same metric, possibly through a series of anchor items, the information for any set
of items can be easily calculated, if the assumptions hold.

The information function is easier to work with than the standard error function
because of its additive property. After the information function is calculated, the
standard error function can be calculated. Due to the non-linear relationship between
information and standard error, adding or deleting items has a non-linear effect on the
standard error. Adding items has a decreasing impact on the standard error as the
standard error gets smaller.

Information and the SEM are more useful than reliability because they are conditional
on 8. But sometimes score users want a single summary of score precision. Reliability can

be calculated from the CTT definition =0~ (%)
o*(X)

error of 8 for 6*(E) and the variance of the ML!° 8s for the observed score variance,

termed the empirical reliability (du Toit, 2003, p. 34). Or the theoretical reliability

, substituting the average standard

® Of course, if the model does not fit, deleting a subset of items may change the estimation of 6 and all of the
parameters of the other items.

10 The formula is slightly different for Bayesian 8s because the variance of Bayesian estimates is the estimated
true score variance.
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can be estimated by integrating the information over the distribution of theta (either the
hypothetical distribution or the distribution estimated along with the item parameters)
and substituting the corresponding marginal standard error estimate. As in CTT, reli-
ability must be in reference to a particular population. Reliability depends on the group
variance.

One caveat regarding information: as noted in the introductory paragraph for this sec-
tion, information is a property of ML estimates. In IRT, 8 is sometimes estimated by ML,
with or without a Bayesian prior. The information function can be adjusted for the prior
if the prior has a second derivative; for example, the second derivative of the normal dis-
tribution is the inverse of the standard deviation, so if a standard normal prior is used, a
constant of 1 is added to the information across the 6 range for the MAP estimates. EAP
estimates are not ML estimates. The appropriate standard error for EAP estimates is the

posterior standard deviation, which will be < = m if1(0) is based on the ML estimate
without a prior but > = @ if I(8) based on the ML estimates with a prior.
Chapter Summary

This chapter has provided an overview of CTT, STT as a variant of CTT with stronger
assumptions and a focus on items instead of test scores, and g theory as an extension of
CTT. With these theories, the true score or domain score or universe score is defined
simply as the expected value of the observed score. Next, the focus moved to IRT. In
IRT, a latent variable, 6, is posited to underlie the observed item responses. Although

the observed responses are used in estimating 6, 6 is not defined directly in terms of the
responses the way T is defined in terms of X in CTT. Procedures for estimating the
standard error and reliability of the scores were also discussed for the different score the-
ories. In CTT and g theory, a single estimate of the SEM is obtained for all scores. In
STT and IRT, the standard error is a function of { or 6. In STT, proportion-correct

scores near 0 or 1 have the lowest standard errors. In IRT, s furthest from the item
difficulties have the highest standard errors. In all test scoring theories, reliability, in con-
trast to the SEM, is group dependent.
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Code 1 SAS latent and observed tau-equivalence.

options nocenter;
*jillustrates difference between latent and observed tau-
equivalence;
%$let seed=552954; *so can recreate later;
libname 1libl "C:\Christine";
data l1libl.tau;
seed=552954;
do id=1 to 100000000;
array al[l10]; *continuous items;
array b[10]; *another set of continuous items;
array c[10]; *di items;
array d[10]; *another set of di items;
T=rannor {&seed) ;
do i=1 to 10;
al[i]l=.6*T + .8*rannor(&seed)+(i-1)*.3 -1.35;
b[i]=.6*T + .8*rannor(&seed)+(i-1)*.3 -1.35;
if alil<-.5 then c¢[i]=0; else c[i]l=1;
if b[i]<-.5 then d[i]=0; else d[i]=1;
end;
Xstarl=sum(of al-alo0);
Xstar2=sum(of bl-bl0);
Xl=sum{of cl-cl0);
X2=sum{of d1-d410);
output;
end;
run;
data _null_; set libl.tau;
file "C:\Christine\delta.dat";
put cl-cl0 d1-410;
run;

proc corr; var Xstarl Xstar2; run;

proc corr alpha nocorr; var al-al0; run;
proc corr alpha nocorr; var bl-bl0; run;
proc corr; var X1 X2; run;

proc corr alpha nocorr; var cl-cl0; run;
proc corr alpha nocorr; var d1-d10; run;

Code 2 MPlus delta linear model.

TITLE: dichotomous items linear model
DATA: FILE IS "C:\Christine\delta.dat";
FORMAT is (10F2);
NOBSERVATIONS=10000000;

VARIABLE: NAMES ARE I1-I10;

ANALYSIS: ESTIMATOR=ML;

MODEL: f1 by I1-I10*%*;

flel;

[f1@0] ;

OQUTPUT: STDYX;

SAVEDATA:

RESULTS are "C:\Christine\deltalLin.res";

Code 3 MPlus delta probit model.

TITLE: dichotomous items probit link model
DATA: FILE IS 'C:\Christine\delta.dat';
FORMAT is (10F2);
NOBSERVATIONS=10000000;
VARIABLE: NAMES ARE I1-I10;
CATEGORICAL: ARE I1-T10;
ANALYSIS: ESTIMATOR=WLSMV;
MODEL: f1 by I1-I10*;
flel;
[f1@0] ;
QUTPUT: STDYX;
SAVEDATA:
RESULTS are "C:\Christine\deltaProbit.res";




